These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
284 related items for PubMed ID: 24267230
21. Genetic variation in APOB, PCSK9, and ANGPTL3 in carriers of pathogenic autosomal dominant hypercholesterolemic mutations with unexpected low LDL-Cl Levels. Huijgen R, Sjouke B, Vis K, de Randamie JS, Defesche JC, Kastelein JJ, Hovingh GK, Fouchier SW. Hum Mutat; 2012 Feb; 33(2):448-55. PubMed ID: 22095935 [Abstract] [Full Text] [Related]
22. No genetic linkage or molecular evidence for involvement of the PCSK9, ARH or CYP7A1 genes in the Familial Hypercholesterolemia phenotype in a sample of Danish families without pathogenic mutations in the LDL receptor and apoB genes. Damgaard D, Jensen JM, Larsen ML, Soerensen VR, Jensen HK, Gregersen N, Jensen LG, Faergeman O. Atherosclerosis; 2004 Dec; 177(2):415-22. PubMed ID: 15530918 [Abstract] [Full Text] [Related]
23. Mutations in STAP1 are associated with autosomal dominant hypercholesterolemia. Fouchier SW, Dallinga-Thie GM, Meijers JC, Zelcer N, Kastelein JJ, Defesche JC, Hovingh GK. Circ Res; 2014 Aug 29; 115(6):552-5. PubMed ID: 25035151 [Abstract] [Full Text] [Related]
27. Cosegregation of serum cholesterol with cholesterol intestinal absorption markers in families with primary hypercholesterolemia without mutations in LDLR, APOB, PCSK9 and APOE genes. Baila-Rueda L, Pérez-Ruiz MR, Jarauta E, Tejedor MT, Mateo-Gallego R, Lamiquiz-Moneo I, de Castro-Orós I, Cenarro A, Civeira F. Atherosclerosis; 2016 Mar 29; 246():202-7. PubMed ID: 26802983 [Abstract] [Full Text] [Related]
28. Effect of a splice site mutation in LDLR gene and two variations in PCSK9 gene in Tunisian families with familial hypercholesterolaemia. Jelassi A, Slimani A, Jguirim I, Najah M, Maatouk F, Varret M, Slimane MN. Ann Clin Biochem; 2011 Jan 29; 48(Pt 1):83-6. PubMed ID: 21115573 [Abstract] [Full Text] [Related]
29. Refinement of variant selection for the LDL cholesterol genetic risk score in the diagnosis of the polygenic form of clinical familial hypercholesterolemia and replication in samples from 6 countries. Futema M, Shah S, Cooper JA, Li K, Whittall RA, Sharifi M, Goldberg O, Drogari E, Mollaki V, Wiegman A, Defesche J, D'Agostino MN, D'Angelo A, Rubba P, Fortunato G, Waluś-Miarka M, Hegele RA, Aderayo Bamimore M, Durst R, Leitersdorf E, Mulder MT, Roeters van Lennep JE, Sijbrands EJ, Whittaker JC, Talmud PJ, Humphries SE. Clin Chem; 2015 Jan 29; 61(1):231-8. PubMed ID: 25414277 [Abstract] [Full Text] [Related]
30. Phenotypic variability in 4 homozygous familial hypercholesterolemia siblings compound heterozygous for LDLR mutations. Rabacchi C, Bigazzi F, Puntoni M, Sbrana F, Sampietro T, Tarugi P, Bertolini S, Calandra S. J Clin Lipidol; 2016 Jan 29; 10(4):944-952.e1. PubMed ID: 27578127 [Abstract] [Full Text] [Related]
31. Genetic diagnosis of familial hypercholesterolaemia by targeted next-generation sequencing. Maglio C, Mancina RM, Motta BM, Stef M, Pirazzi C, Palacios L, Askaryar N, Borén J, Wiklund O, Romeo S. J Intern Med; 2014 Oct 29; 276(4):396-403. PubMed ID: 24785115 [Abstract] [Full Text] [Related]
32. [Familial hypercholesterolemia in Tunisia]. Jelassi A, Jguirim I, Najah M, Maatouk F, Ben Hamda K, Slimane MN. Pathol Biol (Paris); 2009 Jul 29; 57(5):444-50. PubMed ID: 19041195 [Abstract] [Full Text] [Related]
33. Lipid phenotype and heritage pattern in families with genetic hypercholesterolemia not related to LDLR, APOB, PCSK9, or APOE. Jarauta E, Pérez-Ruiz MR, Pérez-Calahorra S, Mateo-Gallego R, Cenarro A, Cofán M, Ros E, Civeira F, Tejedor MT. J Clin Lipidol; 2016 Jul 29; 10(6):1397-1405.e2. PubMed ID: 27919357 [Abstract] [Full Text] [Related]
34. APOE Molecular Spectrum in a French Cohort with Primary Dyslipidemia. Abou Khalil Y, Marmontel O, Ferrières J, Paillard F, Yelnik C, Carreau V, Charrière S, Bruckert E, Gallo A, Giral P, Philippi A, Bluteau O, Boileau C, Abifadel M, Di-Filippo M, Carrié A, Rabès JP, Varret M. Int J Mol Sci; 2022 May 21; 23(10):. PubMed ID: 35628605 [Abstract] [Full Text] [Related]
36. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Abifadel M, Varret M, Rabès JP, Allard D, Ouguerram K, Devillers M, Cruaud C, Benjannet S, Wickham L, Erlich D, Derré A, Villéger L, Farnier M, Beucler I, Bruckert E, Chambaz J, Chanu B, Lecerf JM, Luc G, Moulin P, Weissenbach J, Prat A, Krempf M, Junien C, Seidah NG, Boileau C. Nat Genet; 2003 Jun 21; 34(2):154-6. PubMed ID: 12730697 [Abstract] [Full Text] [Related]
37. Compound heterozygous familial hypercholesterolemia in a Chinese boy with a de novo and transmitted low-density lipoprotein receptor mutation. Ma Y, Gong Y, Garg A, Zhou H. J Clin Lipidol; 2018 Jun 21; 12(1):230-235.e6. PubMed ID: 29233637 [Abstract] [Full Text] [Related]
38. Mutational heterogeneity in low-density lipoprotein receptor gene related to familial hypercholesterolemia in Morocco. Chater R, Aït Chihab K, Rabès JP, Varret M, Chabraoui L, El Jahiri Y, Adlouni A, Boileau C, Kettani A, El Messal M. Clin Chim Acta; 2006 Nov 21; 373(1-2):62-9. PubMed ID: 16806138 [Abstract] [Full Text] [Related]
40. Use of targeted exome sequencing as a diagnostic tool for Familial Hypercholesterolaemia. Futema M, Plagnol V, Whittall RA, Neil HA, Simon Broome Register Group, Humphries SE, UK10K. J Med Genet; 2012 Oct 21; 49(10):644-9. PubMed ID: 23054246 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]