These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


390 related items for PubMed ID: 24269557

  • 21. On the interaction of β-amyloid peptides and α7-nicotinic acetylcholine receptors in Alzheimer's disease.
    Oz M, Lorke DE, Yang KH, Petroianu G.
    Curr Alzheimer Res; 2013 Jul; 10(6):618-30. PubMed ID: 23627750
    [Abstract] [Full Text] [Related]

  • 22. Alzheimer's disease and amyloid: culprit or coincidence?
    Skaper SD.
    Int Rev Neurobiol; 2012 Jul; 102():277-316. PubMed ID: 22748834
    [Abstract] [Full Text] [Related]

  • 23. Nicotinic Cholinergic Mechanisms in Alzheimer's Disease.
    Shen J, Wu J.
    Int Rev Neurobiol; 2015 Jul; 124():275-92. PubMed ID: 26472533
    [Abstract] [Full Text] [Related]

  • 24. [Therapy of Alzheimer disease].
    Kovács T.
    Neuropsychopharmacol Hung; 2009 Mar; 11(1):27-33. PubMed ID: 19731816
    [Abstract] [Full Text] [Related]

  • 25. PTI-125 Reduces Biomarkers of Alzheimer's Disease in Patients.
    Wang HY, Pei Z, Lee KC, Lopez-Brignoni E, Nikolov B, Crowley CA, Marsman MR, Barbier R, Friedmann N, Burns LH.
    J Prev Alzheimers Dis; 2020 Mar; 7(4):256-264. PubMed ID: 32920628
    [Abstract] [Full Text] [Related]

  • 26. Neural Stem Cell Transplant-Induced Effect on Neurogenesis and Cognition in Alzheimer Tg2576 Mice Is Inhibited by Concomitant Treatment with Amyloid-Lowering or Cholinergic α7 Nicotinic Receptor Drugs.
    Lilja AM, Malmsten L, Röjdner J, Voytenko L, Verkhratsky A, Ögren SO, Nordberg A, Marutle A.
    Neural Plast; 2015 Mar; 2015():370432. PubMed ID: 26257960
    [Abstract] [Full Text] [Related]

  • 27. 3×Tg-AD Mice Overexpressing Phospholipid Transfer Protein Improves Cognition Through Decreasing Amyloid-β Production and Tau Hyperphosphorylation.
    Wang WZ, Li MW, Chen Y, Liu LY, Xu Y, Xia ZH, Yu Y, Wang XD, Chen W, Zhang F, Xu XY, Gao YF, Zhang JG, Qin SC, Wang H.
    J Alzheimers Dis; 2021 Mar; 82(4):1635-1649. PubMed ID: 34219730
    [Abstract] [Full Text] [Related]

  • 28. Restoring long-term potentiation impaired by amyloid-beta oligomers: comparison of an acetylcholinesterase inhibitior and selective neuronal nicotinic receptor agonists.
    Kroker KS, Moreth J, Kussmaul L, Rast G, Rosenbrock H.
    Brain Res Bull; 2013 Jul; 96():28-38. PubMed ID: 23639920
    [Abstract] [Full Text] [Related]

  • 29. Tetrahydrohyperforin decreases cholinergic markers associated with amyloid-β plaques, 4-hydroxynonenal formation, and caspase-3 activation in AβPP/PS1 mice.
    Carvajal FJ, Zolezzi JM, Tapia-Rojas C, Godoy JA, Inestrosa NC.
    J Alzheimers Dis; 2013 Jul; 36(1):99-118. PubMed ID: 23568104
    [Abstract] [Full Text] [Related]

  • 30. Cognitive-Enhancing Effects of a Polyphenols-Rich Extract from Fruits without Changes in Neuropathology in an Animal Model of Alzheimer's Disease.
    Dal-Pan A, Dudonné S, Bourassa P, Bourdoulous M, Tremblay C, Desjardins Y, Calon F, Neurophenols consortium.
    J Alzheimers Dis; 2017 Jul; 55(1):115-135. PubMed ID: 27662290
    [Abstract] [Full Text] [Related]

  • 31. Zileuton improves memory deficits, amyloid and tau pathology in a mouse model of Alzheimer's disease with plaques and tangles.
    Chu J, Li JG, Praticò D.
    PLoS One; 2013 Jul; 8(8):e70991. PubMed ID: 23951061
    [Abstract] [Full Text] [Related]

  • 32.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 33. Broad-spectrum efficacy across cognitive domains by alpha7 nicotinic acetylcholine receptor agonism correlates with activation of ERK1/2 and CREB phosphorylation pathways.
    Bitner RS, Bunnelle WH, Anderson DJ, Briggs CA, Buccafusco J, Curzon P, Decker MW, Frost JM, Gronlien JH, Gubbins E, Li J, Malysz J, Markosyan S, Marsh K, Meyer MD, Nikkel AL, Radek RJ, Robb HM, Timmermann D, Sullivan JP, Gopalakrishnan M.
    J Neurosci; 2007 Sep 26; 27(39):10578-87. PubMed ID: 17898229
    [Abstract] [Full Text] [Related]

  • 34.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 35. Widespread deficits in adult neurogenesis precede plaque and tangle formation in the 3xTg mouse model of Alzheimer's disease.
    Hamilton LK, Aumont A, Julien C, Vadnais A, Calon F, Fernandes KJ.
    Eur J Neurosci; 2010 Sep 26; 32(6):905-20. PubMed ID: 20726889
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Transgenic mice overexpressing amyloid beta protein are an incomplete model of Alzheimer disease.
    Schwab C, Hosokawa M, McGeer PL.
    Exp Neurol; 2004 Jul 26; 188(1):52-64. PubMed ID: 15191802
    [Abstract] [Full Text] [Related]

  • 38.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 39. Antibodies against extracellular domains of α4 and α7 subunits alter the levels of nicotinic receptors in the mouse brain and affect memory: possible relevance to Alzheimer's pathology.
    Lykhmus O, Koval L, Skok M, Zouridakis M, Zisimopoulou P, Tzartos S, Tsetlin V, Granon S, Changeux JP, Komisarenko S, Cloëz-Tayarani I.
    J Alzheimers Dis; 2011 Jul 26; 24(4):693-704. PubMed ID: 21321393
    [Abstract] [Full Text] [Related]

  • 40. The p38 mitogen activated protein kinase regulates β-amyloid protein internalization through the α7 nicotinic acetylcholine receptor in mouse brain.
    Ma KG, Lv J, Yang WN, Chang KW, Hu XD, Shi LL, Zhai WY, Zong HF, Qian YH.
    Brain Res Bull; 2018 Mar 26; 137():41-52. PubMed ID: 29128415
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 20.