These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level. Pan H, Tao J, Xu X, Tang R. Langmuir; 2007 Aug 14; 23(17):8972-81. PubMed ID: 17658861 [Abstract] [Full Text] [Related]
6. Isoexergonic Conformations of Surface-Bound Citrate Regulated Bioinspired Apatite Nanocrystal Growth. Wang Z, Xu Z, Zhao W, Chen W, Miyoshi T, Sahai N. ACS Appl Mater Interfaces; 2016 Oct 19; 8(41):28116-28123. PubMed ID: 27593160 [Abstract] [Full Text] [Related]
7. Density functional theory study of the binding of glycine, proline, and hydroxyproline to the hydroxyapatite (0001) and (0110) surfaces. Almora-Barrios N, Austen KF, de Leeuw NH. Langmuir; 2009 May 05; 25(9):5018-25. PubMed ID: 19397352 [Abstract] [Full Text] [Related]
9. Preparation of calcium hydroxyapatite nanoparticles using microreactor and their characteristics of protein adsorption. Kandori K, Kuroda T, Togashi S, Katayama E. J Phys Chem B; 2011 Feb 03; 115(4):653-9. PubMed ID: 21162543 [Abstract] [Full Text] [Related]
10. Cells Recognize and Prefer Bone-like Hydroxyapatite: Biochemical Understanding of Ultrathin Mineral Platelets in Bone. Liu C, Zhai H, Zhang Z, Li Y, Xu X, Tang R. ACS Appl Mater Interfaces; 2016 Nov 09; 8(44):29997-30004. PubMed ID: 27750425 [Abstract] [Full Text] [Related]
11. Hydroxyapatite as a key biomaterial: quantum-mechanical simulation of its surfaces in interaction with biomolecules. Corno M, Rimola A, Bolis V, Ugliengo P. Phys Chem Chem Phys; 2010 Jun 28; 12(24):6309-29. PubMed ID: 20485772 [Abstract] [Full Text] [Related]
12. A density functional theory study of the interaction of collagen peptides with hydroxyapatite surfaces. Almora-Barrios N, de Leeuw NH. Langmuir; 2010 Sep 21; 26(18):14535-42. PubMed ID: 20731400 [Abstract] [Full Text] [Related]
14. Control of calcium oxalate crystal growth by face-specific adsorption of an osteopontin phosphopeptide. Grohe B, O'Young J, Ionescu DA, Lajoie G, Rogers KA, Karttunen M, Goldberg HA, Hunter GK. J Am Chem Soc; 2007 Dec 05; 129(48):14946-51. PubMed ID: 17994739 [Abstract] [Full Text] [Related]
15. Computer simulation of elastic constants of hydroxyapatite and fluorapatite. Menéndez-Proupin E, Cervantes-Rodríguez S, Osorio-Pulgar R, Franco-Cisterna M, Camacho-Montes H, Fuentes ME. J Mech Behav Biomed Mater; 2011 Oct 05; 4(7):1011-20. PubMed ID: 21783111 [Abstract] [Full Text] [Related]
17. Synthesis of positively charged calcium hydroxyapatite nano-crystals and their adsorption behavior of proteins. Kandori K, Oda S, Fukusumi M, Morisada Y. Colloids Surf B Biointerfaces; 2009 Oct 01; 73(1):140-5. PubMed ID: 19515538 [Abstract] [Full Text] [Related]
19. Energetic basis for the molecular-scale organization of bone. Tao J, Battle KC, Pan H, Salter EA, Chien YC, Wierzbicki A, De Yoreo JJ. Proc Natl Acad Sci U S A; 2015 Jan 13; 112(2):326-31. PubMed ID: 25540415 [Abstract] [Full Text] [Related]
20. The impact of hydroxyapatite crystal structures and protein interactions on bone's mechanical properties. Sun Y, Wang Y, Ji C, Ma J, He B. Sci Rep; 2024 Apr 29; 14(1):9786. PubMed ID: 38684921 [Abstract] [Full Text] [Related] Page: [Next] [New Search]