These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


344 related items for PubMed ID: 24277864

  • 1. Transition between fast and slow gamma modes in rat hippocampus area CA1 in vitro is modulated by slow CA3 gamma oscillations.
    Pietersen AN, Ward PD, Hagger-Vaughan N, Wiggins J, Jefferys JG, Vreugdenhil M.
    J Physiol; 2014 Feb 15; 592(4):605-20. PubMed ID: 24277864
    [Abstract] [Full Text] [Related]

  • 2. Feedforward inhibition underlies the propagation of cholinergically induced gamma oscillations from hippocampal CA3 to CA1.
    Zemankovics R, Veres JM, Oren I, Hájos N.
    J Neurosci; 2013 Jul 24; 33(30):12337-51. PubMed ID: 23884940
    [Abstract] [Full Text] [Related]

  • 3. Intrinsic Mechanisms of Frequency Selectivity in the Proximal Dendrites of CA1 Pyramidal Neurons.
    Combe CL, Canavier CC, Gasparini S.
    J Neurosci; 2018 Sep 19; 38(38):8110-8127. PubMed ID: 30076213
    [Abstract] [Full Text] [Related]

  • 4. μ-Opioid receptor activation modulates CA3-to-CA1 gamma oscillation phase-coupling.
    Zhang Y, Ahmed S, Neagu G, Wang Y, Li Z, Wen J, Liu C, Vreugdenhil M.
    IBRO Rep; 2019 Jun 19; 6():122-131. PubMed ID: 30834352
    [Abstract] [Full Text] [Related]

  • 5. Cannabinoids attenuate hippocampal γ oscillations by suppressing excitatory synaptic input onto CA3 pyramidal neurons and fast spiking basket cells.
    Holderith N, Németh B, Papp OI, Veres JM, Nagy GA, Hájos N.
    J Physiol; 2011 Oct 15; 589(Pt 20):4921-34. PubMed ID: 21859823
    [Abstract] [Full Text] [Related]

  • 6. Extrinsic and local glutamatergic inputs of the rat hippocampal CA1 area differentially innervate pyramidal cells and interneurons.
    Takács VT, Klausberger T, Somogyi P, Freund TF, Gulyás AI.
    Hippocampus; 2012 Jun 15; 22(6):1379-91. PubMed ID: 21956752
    [Abstract] [Full Text] [Related]

  • 7. Schaffer-specific local field potentials reflect discrete excitatory events at gamma frequency that may fire postsynaptic hippocampal CA1 units.
    Fernández-Ruiz A, Makarov VA, Benito N, Herreras O.
    J Neurosci; 2012 Apr 11; 32(15):5165-76. PubMed ID: 22496562
    [Abstract] [Full Text] [Related]

  • 8. Modeling sharp wave-ripple complexes through a CA3-CA1 network model with chemical synapses.
    Taxidis J, Coombes S, Mason R, Owen MR.
    Hippocampus; 2012 May 11; 22(5):995-1017. PubMed ID: 21452258
    [Abstract] [Full Text] [Related]

  • 9. Fast gamma oscillations are generated intrinsically in CA1 without the involvement of fast-spiking basket cells.
    Craig MT, McBain CJ.
    J Neurosci; 2015 Feb 25; 35(8):3616-24. PubMed ID: 25716860
    [Abstract] [Full Text] [Related]

  • 10. Terminal field and firing selectivity of cholecystokinin-expressing interneurons in the hippocampal CA3 area.
    Lasztóczi B, Tukker JJ, Somogyi P, Klausberger T.
    J Neurosci; 2011 Dec 07; 31(49):18073-93. PubMed ID: 22159120
    [Abstract] [Full Text] [Related]

  • 11. A computational study on plasticity during theta cycles at Schaffer collateral synapses on CA1 pyramidal cells in the hippocampus.
    Saudargiene A, Cobb S, Graham BP.
    Hippocampus; 2015 Feb 07; 25(2):208-18. PubMed ID: 25220633
    [Abstract] [Full Text] [Related]

  • 12. Contribution of CA3 and CA1 pyramidal neurons to the tonic α7 nAChR-dependent glutamatergic input to CA1 pyramidal neurons.
    Banerjee J, Alkondon M, Albuquerque EX, Pereira EF.
    Neurosci Lett; 2013 Oct 25; 554():167-71. PubMed ID: 23973303
    [Abstract] [Full Text] [Related]

  • 13. The hippocampal CA3 region can generate two distinct types of sharp wave-ripple complexes, in vitro.
    Hofer KT, Kandrács Á, Ulbert I, Pál I, Szabó C, Héja L, Wittner L.
    Hippocampus; 2015 Feb 25; 25(2):169-86. PubMed ID: 25209976
    [Abstract] [Full Text] [Related]

  • 14. Dopamine D4 receptor activation increases hippocampal gamma oscillations by enhancing synchronization of fast-spiking interneurons.
    Andersson R, Johnston A, Fisahn A.
    PLoS One; 2012 Feb 25; 7(7):e40906. PubMed ID: 22815864
    [Abstract] [Full Text] [Related]

  • 15. Atorvastatin enhances kainate-induced gamma oscillations in rat hippocampal slices.
    Li C, Wang J, Zhao J, Wang Y, Liu Z, Guo FL, Wang XF, Vreugdenhil M, Lu CB.
    Eur J Neurosci; 2016 Sep 25; 44(5):2236-46. PubMed ID: 27336700
    [Abstract] [Full Text] [Related]

  • 16. The critical role of persistent sodium current in hippocampal gamma oscillations.
    Kang YJ, Clement EM, Sumsky SL, Xiang Y, Park IH, Santaniello S, Greenfield LJ, Garcia-Rill E, Smith BN, Lee SH.
    Neuropharmacology; 2020 Jan 01; 162():107787. PubMed ID: 31550457
    [Abstract] [Full Text] [Related]

  • 17. Self-generated theta oscillations in the hippocampus.
    Goutagny R, Jackson J, Williams S.
    Nat Neurosci; 2009 Dec 01; 12(12):1491-3. PubMed ID: 19881503
    [Abstract] [Full Text] [Related]

  • 18. Modeling fast and slow gamma oscillations with interneurons of different subtype.
    Keeley S, Fenton AA, Rinzel J.
    J Neurophysiol; 2017 Mar 01; 117(3):950-965. PubMed ID: 27927782
    [Abstract] [Full Text] [Related]

  • 19. Parvalbumin and Somatostatin Interneurons Contribute to the Generation of Hippocampal Gamma Oscillations.
    Antonoudiou P, Tan YL, Kontou G, Upton AL, Mann EO.
    J Neurosci; 2020 Sep 30; 40(40):7668-7687. PubMed ID: 32859716
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 18.