These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
233 related items for PubMed ID: 24281009
21. Auditory efferent feedback system deficits precede age-related hearing loss: contralateral suppression of otoacoustic emissions in mice. Zhu X, Vasilyeva ON, Kim S, Jacobson M, Romney J, Waterman MS, Tuttle D, Frisina RD. J Comp Neurol; 2007 Aug 10; 503(5):593-604. PubMed ID: 17559088 [Abstract] [Full Text] [Related]
22. Dose-Dependent Pattern of Cochlear Synaptic Degeneration in C57BL/6J Mice Induced by Repeated Noise Exposure. Qian M, Wang Q, Wang Z, Ma Q, Wang X, Han K, Wu H, Huang Z. Neural Plast; 2021 Aug 10; 2021():9919977. PubMed ID: 34221004 [Abstract] [Full Text] [Related]
23. Age-related declines in distortion product otoacoustic emissions utilizing pure tone contralateral stimulation in CBA/CaJ mice. Varghese GI, Zhu X, Frisina RD. Hear Res; 2005 Nov 10; 209(1-2):60-7. PubMed ID: 16061336 [Abstract] [Full Text] [Related]
24. Protection from acoustic trauma is not a primary function of the medial olivocochlear efferent system. Christopher Kirk E, Smith DW. J Assoc Res Otolaryngol; 2003 Dec 10; 4(4):445-65. PubMed ID: 12784134 [Abstract] [Full Text] [Related]
25. The effect of an age-related hearing loss gene (Ahl) on noise-induced hearing loss and cochlear damage from low-frequency noise. Harding GW, Bohne BA, Vos JD. Hear Res; 2005 Jun 10; 204(1-2):90-100. PubMed ID: 15925194 [Abstract] [Full Text] [Related]
26. Within- and Across-Subject Variability of Repeated Measurements of Medial Olivocochlear-Induced Changes in Transient-Evoked Otoacoustic Emissions. Mertes IB, Goodman SS. Ear Hear; 2016 Jun 10; 37(2):e72-84. PubMed ID: 26583481 [Abstract] [Full Text] [Related]
27. Subclinical dysfunction of cochlea and cochlear efferents in migraine: an otoacoustic emission study. Bolay H, Bayazit YA, Gündüz B, Ugur AK, Akçali D, Altunyay S, Ilica S, Babacan A. Cephalalgia; 2008 Apr 10; 28(4):309-17. PubMed ID: 18279433 [Abstract] [Full Text] [Related]
28. Extended frequency range hearing thresholds and otoacoustic emissions in acute acoustic trauma. Büchler M, Kompis M, Hotz MA. Otol Neurotol; 2012 Oct 10; 33(8):1315-22. PubMed ID: 22931865 [Abstract] [Full Text] [Related]
29. [Comparison of methods for early detection of noise vulnerability of the inner ear. Amplitude reduction of otoacoustic emissions are most sensitive at submaximal noise impulse exposure]. Plinkert PK, Hemmert W, Zenner HP. HNO; 1995 Feb 10; 43(2):89-97. PubMed ID: 7713771 [Abstract] [Full Text] [Related]
30. [A study on the contralateral suppressive effects of distortion product otoacoustic emissions]. Wang H, Zhong N. Lin Chuang Er Bi Yan Hou Ke Za Zhi; 1997 Nov 10; 11(11):489-92. PubMed ID: 10323015 [Abstract] [Full Text] [Related]
31. Role for the lateral olivocochlear neurons in auditory function. Focus on "Selective removal of lateral olivocochlear efferents increases vulnerability to acute acoustic injury". Le Prell CG. J Neurophysiol; 2007 Feb 10; 97(2):963-5. PubMed ID: 17182904 [No Abstract] [Full Text] [Related]
32. Characteristics of noise exposure during solitary trumpet playing: immediate impact on distortion-product otoacoustic emissions and long-term implications for hearing. Poissant SF, Freyman RL, MacDonald AJ, Nunes HA. Ear Hear; 2012 Feb 10; 33(4):543-53. PubMed ID: 22531575 [Abstract] [Full Text] [Related]
33. Contralateral suppression of distortion product otoacoustic emissions: effect of the primary frequency in Dpgrams. Zhang F, Boettcher FA, Sun XM. Int J Audiol; 2007 Apr 10; 46(4):187-95. PubMed ID: 17454232 [Abstract] [Full Text] [Related]
34. Olivocochlear efferents: anatomy, physiology, function, and the measurement of efferent effects in humans. Guinan JJ. Ear Hear; 2006 Dec 10; 27(6):589-607. PubMed ID: 17086072 [Abstract] [Full Text] [Related]
35. Function of the medial olivocochlear system in children with phonological disorders. Didoné DD, Kunst LR, Weich TM, Tochetto TM, Mota HB. J Soc Bras Fonoaudiol; 2011 Dec 10; 23(4):358-63. PubMed ID: 22231057 [Abstract] [Full Text] [Related]
36. [Efferent suppression test--sensitivity and specificity]. Lisowska G, Namysłowski G, Misiołek M, Scierski W, Orecka B, Czecior E, Dziendziel A. Otolaryngol Pol; 2008 Dec 10; 62(6):747-54. PubMed ID: 19205524 [Abstract] [Full Text] [Related]
37. Recreational noise exposure decreases olivocochlear efferent reflex strength in young adults. Peng JH, Wang JB, Chen JH. J Otolaryngol Head Neck Surg; 2010 Aug 10; 39(4):426-32. PubMed ID: 20643010 [Abstract] [Full Text] [Related]
38. [Amplitude changes in distortion products of otoacoustic emissions after acute noise exposure]. Oeken J, Menz D. Laryngorhinootologie; 1996 May 10; 75(5):265-9. PubMed ID: 8672208 [Abstract] [Full Text] [Related]
39. Contralateral suppression of distortion product otoacoustic emissions and the middle-ear muscle reflex in human ears. Sun XM. Hear Res; 2008 Mar 10; 237(1-2):66-75. PubMed ID: 18258398 [Abstract] [Full Text] [Related]
40. Transient-evoked otoacoustic emissions in a group of professional singers who have normal pure-tone hearing thresholds. Hamdan AL, Abouchacra KS, Zeki Al Hazzouri AG, Zaytoun G. Ear Hear; 2008 Jun 10; 29(3):360-77. PubMed ID: 18382377 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]