These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


80 related items for PubMed ID: 2428257

  • 1. Carbachol inhibits electrophysiological effects of cyclic AMP in ventricular myocytes.
    Rardon DP, Pappano AJ.
    Am J Physiol; 1986 Sep; 251(3 Pt 2):H601-11. PubMed ID: 2428257
    [Abstract] [Full Text] [Related]

  • 2. Cyclic AMP metabolism in intact rat ventricular cardiac myocytes: interaction of carbachol with isoproterenol and 3-isobutyl-1-methylxanthine.
    Katano Y, Endoh M.
    Mol Cell Biochem; 1993 Feb 17; 119(1-2):195-201. PubMed ID: 7681141
    [Abstract] [Full Text] [Related]

  • 3. Cholinergic antagonism of beta-adrenergic stimulated action potentials and adenylate cyclase activity in rabbit ventricular cardiomyocytes.
    Watson JM, Vogel SM, Cotterell DJ, Dubocovich ML.
    Eur J Pharmacol; 1988 Oct 11; 155(1-2):101-8. PubMed ID: 2468508
    [Abstract] [Full Text] [Related]

  • 4. Muscarinic receptor stimulation and cyclic AMP-dependent effects in guinea-pig ventricular myocardium.
    Schmied R, Korth M.
    Br J Pharmacol; 1990 Feb 11; 99(2):401-7. PubMed ID: 1691677
    [Abstract] [Full Text] [Related]

  • 5. Role of cAMP in the functional interaction of carbachol with different cAMP elevating agents in rabbit atrium.
    Ray A, MacLeod KM.
    Life Sci; 1992 Feb 11; 51(18):1411-8. PubMed ID: 1383666
    [Abstract] [Full Text] [Related]

  • 6. A pharmacological investigation of the contribution of muscarinic receptor-linked potassium channels to the reversal by carbachol of positive inotropic responses of rabbit left atrium to cyclic AMP-generating agents.
    Ray A, MacLeod KM.
    J Pharmacol Exp Ther; 1993 Sep 11; 266(3):1594-601. PubMed ID: 7690405
    [Abstract] [Full Text] [Related]

  • 7. Effects of PDE inhibitors and carbachol on the L-type Ca current in guinea pig ventricular myocytes.
    Mubagwa K, Shirayama T, Moreau M, Pappano AJ.
    Am J Physiol; 1993 Oct 11; 265(4 Pt 2):H1353-63. PubMed ID: 7694486
    [Abstract] [Full Text] [Related]

  • 8. Regulation of force and intracellular calcium transients by cyclic AMP generated by forskolin, MDL 17,043 and isoprenaline, and its modulation by muscarinic receptor agents: a novel mechanism for accentuated antagonism.
    Endoh M.
    Basic Res Cardiol; 1989 Oct 11; 84 Suppl 1():69-83. PubMed ID: 2554874
    [Abstract] [Full Text] [Related]

  • 9. Nitric oxide synthase (NOS3) and contractile responsiveness to adrenergic and cholinergic agonists in the heart. Regulation of NOS3 transcription in vitro and in vivo by cyclic adenosine monophosphate in rat cardiac myocytes.
    Belhassen L, Kelly RA, Smith TW, Balligand JL.
    J Clin Invest; 1996 Apr 15; 97(8):1908-15. PubMed ID: 8621775
    [Abstract] [Full Text] [Related]

  • 10. Lack of effect of McN-A-343 on membrane current and contraction in guinea pig ventricular myocytes.
    Shen JB, Jiang B, Pappano AJ.
    J Pharmacol Exp Ther; 1999 Aug 15; 290(2):641-8. PubMed ID: 10411573
    [Abstract] [Full Text] [Related]

  • 11. On the role of phosphatase in regulation of cardiac L-type calcium current by cyclic GMP.
    Shen JB, Pappano AJ.
    J Pharmacol Exp Ther; 2002 May 15; 301(2):501-6. PubMed ID: 11961049
    [Abstract] [Full Text] [Related]

  • 12. Cholinergic inhibition of catecholamine-stimulable cyclic AMP accumulation in murine atria.
    Brown JH.
    J Cyclic Nucleotide Res; 1979 Dec 15; 5(6):423-33. PubMed ID: 231610
    [Abstract] [Full Text] [Related]

  • 13. Regulation of cAMP metabolism in mouse parotid gland by cGMP and calcium.
    Watson EL, Singh JC, McPhee C, Beavo J, Jacobson KL.
    Mol Pharmacol; 1990 Oct 15; 38(4):547-53. PubMed ID: 1700270
    [Abstract] [Full Text] [Related]

  • 14. Ontogeny of regulatory mechanisms for beta-adrenoceptor control of rat cardiac adenylyl cyclase: targeting of G-proteins and the cyclase catalytic subunit.
    Zeiders JL, Seidler FJ, Slotkin TA.
    J Mol Cell Cardiol; 1997 Feb 15; 29(2):603-15. PubMed ID: 9140819
    [Abstract] [Full Text] [Related]

  • 15. Isoprenaline-like effects of the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine on mechanical, biochemical and electrophysiological parameters in the mammalian heart.
    Brückner R, Gramann S, Nose M, Schmitz W, Scholz H.
    Experientia; 1985 Jun 15; 41(6):732-4. PubMed ID: 2408914
    [Abstract] [Full Text] [Related]

  • 16. Antagonism of forskolin effects by adenosine in isolated hearts and ventricular myocytes.
    West GA, Isenberg G, Belardinelli L.
    Am J Physiol; 1986 May 15; 250(5 Pt 2):H769-77. PubMed ID: 3010742
    [Abstract] [Full Text] [Related]

  • 17. Intracellular Na+ modulates the cAMP-dependent regulation of ion channels in the heart.
    Harvey RD, Jurevicius JA, Hume JR.
    Proc Natl Acad Sci U S A; 1991 Aug 15; 88(16):6946-50. PubMed ID: 1714581
    [Abstract] [Full Text] [Related]

  • 18. Physiological effects of carbamylcholine, cyclic GMP and related agents on isolated rat ventricular myocytes.
    Variot N, Ettaiche M, Athias P.
    Arch Int Pharmacodyn Ther; 1987 Jun 15; 287(2):258-71. PubMed ID: 2443096
    [Abstract] [Full Text] [Related]

  • 19. Effect of indapamide on cyclic adenosine 3',5'-monophosphate signal transduction system in isolated adult rat cardiomyocytes from normal myocardium and cardiac hypertrophy.
    Rabkin SW.
    J Cardiovasc Pharmacol; 1993 Jun 15; 22 Suppl 6():S35-41. PubMed ID: 7508059
    [Abstract] [Full Text] [Related]

  • 20. In contrast to forskolin and 3-isobutyl-1-methylxanthine, amrinone stimulates the cardiac voltage-sensitive release mechanism without increasing calcium-induced calcium release.
    Xiong W, Moore HM, Howlett SE, Ferrier GR.
    J Pharmacol Exp Ther; 2001 Sep 15; 298(3):954-63. PubMed ID: 11504790
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.