These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


256 related items for PubMed ID: 24284632

  • 1. DNA-mediated nanoparticle crystallization into Wulff polyhedra.
    Auyeung E, Li TI, Senesi AJ, Schmucker AL, Pals BC, de la Cruz MO, Mirkin CA.
    Nature; 2014 Jan 02; 505(7481):73-7. PubMed ID: 24284632
    [Abstract] [Full Text] [Related]

  • 2. Polarization-Dependent Optical Response in Anisotropic Nanoparticle-DNA Superlattices.
    Sun L, Lin H, Park DJ, Bourgeois MR, Ross MB, Ku JC, Schatz GC, Mirkin CA.
    Nano Lett; 2017 Apr 12; 17(4):2313-2318. PubMed ID: 28358518
    [Abstract] [Full Text] [Related]

  • 3. Single-crystal Winterbottom constructions of nanoparticle superlattices.
    Lewis DJ, Zornberg LZ, Carter DJD, Macfarlane RJ.
    Nat Mater; 2020 Jul 12; 19(7):719-724. PubMed ID: 32203459
    [Abstract] [Full Text] [Related]

  • 4. DNA-nanoparticle superlattices formed from anisotropic building blocks.
    Jones MR, Macfarlane RJ, Lee B, Zhang J, Young KL, Senesi AJ, Mirkin CA.
    Nat Mater; 2010 Nov 12; 9(11):913-7. PubMed ID: 20890281
    [Abstract] [Full Text] [Related]

  • 5. DNA-guided crystallization of colloidal nanoparticles.
    Nykypanchuk D, Maye MM, van der Lelie D, Gang O.
    Nature; 2008 Jan 31; 451(7178):549-52. PubMed ID: 18235496
    [Abstract] [Full Text] [Related]

  • 6. Programming Colloidal Crystal Habit with Anisotropic Nanoparticle Building Blocks and DNA Bonds.
    O'Brien MN, Lin HX, Girard M, Olvera de la Cruz M, Mirkin CA.
    J Am Chem Soc; 2016 Nov 09; 138(44):14562-14565. PubMed ID: 27792331
    [Abstract] [Full Text] [Related]

  • 7. Protein Materials Engineering with DNA.
    McMillan JR, Hayes OG, Winegar PH, Mirkin CA.
    Acc Chem Res; 2019 Jul 16; 52(7):1939-1948. PubMed ID: 31199115
    [Abstract] [Full Text] [Related]

  • 8. Importance of the DNA "bond" in programmable nanoparticle crystallization.
    Macfarlane RJ, Thaner RV, Brown KA, Zhang J, Lee B, Nguyen ST, Mirkin CA.
    Proc Natl Acad Sci U S A; 2014 Oct 21; 111(42):14995-5000. PubMed ID: 25298535
    [Abstract] [Full Text] [Related]

  • 9. Electrostatic assembly of binary nanoparticle superlattices using protein cages.
    Kostiainen MA, Hiekkataipale P, Laiho A, Lemieux V, Seitsonen J, Ruokolainen J, Ceci P.
    Nat Nanotechnol; 2013 Jan 21; 8(1):52-6. PubMed ID: 23241655
    [Abstract] [Full Text] [Related]

  • 10. Selective transformations between nanoparticle superlattices via the reprogramming of DNA-mediated interactions.
    Zhang Y, Pal S, Srinivasan B, Vo T, Kumar S, Gang O.
    Nat Mater; 2015 Aug 21; 14(8):840-7. PubMed ID: 26006003
    [Abstract] [Full Text] [Related]

  • 11. Altering DNA-Programmable Colloidal Crystallization Paths by Modulating Particle Repulsion.
    Wang MX, Brodin JD, Millan JA, Seo SE, Girard M, Olvera de la Cruz M, Lee B, Mirkin CA.
    Nano Lett; 2017 Aug 09; 17(8):5126-5132. PubMed ID: 28731353
    [Abstract] [Full Text] [Related]

  • 12. DNA-controlled assembly of a NaTl lattice structure from gold nanoparticles and protein nanoparticles.
    Cigler P, Lytton-Jean AK, Anderson DG, Finn MG, Park SY.
    Nat Mater; 2010 Nov 09; 9(11):918-22. PubMed ID: 20953184
    [Abstract] [Full Text] [Related]

  • 13. Crystallization of DNA-capped gold nanoparticles in high-concentration, divalent salt environments.
    Tan SJ, Kahn JS, Derrien TL, Campolongo MJ, Zhao M, Smilgies DM, Luo D.
    Angew Chem Int Ed Engl; 2014 Jan 27; 53(5):1316-9. PubMed ID: 24459055
    [Abstract] [Full Text] [Related]

  • 14. Liquid-cell scanning transmission electron microscopy and fluorescence correlation spectroscopy of DNA-directed gold nanoparticle assemblies.
    Jungjohann KL, Wheeler DR, Polsky R, Brozik SM, Brozik JA, Rudolph AR.
    Micron; 2019 Apr 27; 119():54-63. PubMed ID: 30660856
    [Abstract] [Full Text] [Related]

  • 15. Modulating the Bond Strength of DNA-Nanoparticle Superlattices.
    Seo SE, Wang MX, Shade CM, Rouge JL, Brown KA, Mirkin CA.
    ACS Nano; 2016 Feb 23; 10(2):1771-9. PubMed ID: 26699102
    [Abstract] [Full Text] [Related]

  • 16. Controlled Symmetry Breaking in Colloidal Crystal Engineering with DNA.
    Laramy CR, Lopez-Rios H, O'Brien MN, Girard M, Stawicki RJ, Lee B, de la Cruz MO, Mirkin CA.
    ACS Nano; 2019 Feb 26; 13(2):1412-1420. PubMed ID: 30585476
    [Abstract] [Full Text] [Related]

  • 17. DNA-mediated engineering of multicomponent enzyme crystals.
    Brodin JD, Auyeung E, Mirkin CA.
    Proc Natl Acad Sci U S A; 2015 Apr 14; 112(15):4564-9. PubMed ID: 25831510
    [Abstract] [Full Text] [Related]

  • 18. DNA-programmable nanoparticle crystallization.
    Park SY, Lytton-Jean AK, Lee B, Weigand S, Schatz GC, Mirkin CA.
    Nature; 2008 Jan 31; 451(7178):553-6. PubMed ID: 18235497
    [Abstract] [Full Text] [Related]

  • 19. Synthetically programmable nanoparticle superlattices using a hollow three-dimensional spacer approach.
    Auyeung E, Cutler JI, Macfarlane RJ, Jones MR, Wu J, Liu G, Zhang K, Osberg KD, Mirkin CA.
    Nat Nanotechnol; 2011 Dec 11; 7(1):24-8. PubMed ID: 22157725
    [Abstract] [Full Text] [Related]

  • 20. Oligonucleotide flexibility dictates crystal quality in DNA-programmable nanoparticle superlattices.
    Senesi AJ, Eichelsdoerfer DJ, Brown KA, Lee B, Auyeung E, Choi CH, Macfarlane RJ, Young KL, Mirkin CA.
    Adv Mater; 2014 Nov 12; 26(42):7235-40. PubMed ID: 25244608
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.