These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


332 related items for PubMed ID: 24288210

  • 1. Scaffolding for challenging environments: materials selection for tissue engineered intestine.
    Boomer L, Liu Y, Mahler N, Johnson J, Zak K, Nelson T, Lannutti J, Besner GE.
    J Biomed Mater Res A; 2014 Nov; 102(11):3795-802. PubMed ID: 24288210
    [Abstract] [Full Text] [Related]

  • 2. Comparison of polyglycolic acid, polycaprolactone, and collagen as scaffolds for the production of tissue engineered intestine.
    Liu Y, Nelson T, Chakroff J, Cromeens B, Johnson J, Lannutti J, Besner GE.
    J Biomed Mater Res B Appl Biomater; 2019 Apr; 107(3):750-760. PubMed ID: 30270503
    [Abstract] [Full Text] [Related]

  • 3. Heparinized PLLA/PLCL nanofibrous scaffold for potential engineering of small-diameter blood vessel: tunable elasticity and anticoagulation property.
    Wang W, Hu J, He C, Nie W, Feng W, Qiu K, Zhou X, Gao Y, Wang G.
    J Biomed Mater Res A; 2015 May; 103(5):1784-97. PubMed ID: 25196988
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Superior Tissue Evolution in Slow-Degrading Scaffolds for Valvular Tissue Engineering.
    Brugmans MM, Soekhradj-Soechit RS, van Geemen D, Cox M, Bouten CV, Baaijens FP, Driessen-Mol A.
    Tissue Eng Part A; 2016 Jan; 22(1-2):123-32. PubMed ID: 26466917
    [Abstract] [Full Text] [Related]

  • 6. Preparation, characterization and in vitro analysis of novel structured nanofibrous scaffolds for bone tissue engineering.
    Wang J, Yu X.
    Acta Biomater; 2010 Aug; 6(8):3004-12. PubMed ID: 20144749
    [Abstract] [Full Text] [Related]

  • 7. HB-EGF embedded in PGA/PLLA scaffolds via subcritical CO2 augments the production of tissue engineered intestine.
    Liu Y, Nelson T, Cromeens B, Rager T, Lannutti J, Johnson J, Besner GE.
    Biomaterials; 2016 Oct; 103():150-159. PubMed ID: 27380441
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Fabrication of novel high performance ductile poly(lactic acid) nanofiber scaffold coated with poly(vinyl alcohol) for tissue engineering applications.
    Abdal-Hay A, Hussein KH, Casettari L, Khalil KA, Hamdy AS.
    Mater Sci Eng C Mater Biol Appl; 2016 Mar; 60():143-150. PubMed ID: 26706517
    [Abstract] [Full Text] [Related]

  • 11. Comparative analysis of poly-glycolic acid-based hybrid polymer starter matrices for in vitro tissue engineering.
    Generali M, Kehl D, Capulli AK, Parker KK, Hoerstrup SP, Weber B.
    Colloids Surf B Biointerfaces; 2017 Oct 01; 158():203-212. PubMed ID: 28697435
    [Abstract] [Full Text] [Related]

  • 12. Preparation of poly(L-lactic acid) nanofiber scaffolds with a rough surface by phase inversion using supercritical carbon dioxide.
    Yang DZ, Chen AZ, Wang SB, Li Y, Tang XL, Wu YJ.
    Biomed Mater; 2015 Jun 24; 10(3):035015. PubMed ID: 26107415
    [Abstract] [Full Text] [Related]

  • 13. Fabrication and characterization of Mg/P(LLA-CL)-blended nanofiber scaffold.
    Li H, Wu T, Zheng Y, El-Hamshary H, Al-Deyab SS, Mo X.
    J Biomater Sci Polym Ed; 2014 Jul 24; 25(10):1013-27. PubMed ID: 24894635
    [Abstract] [Full Text] [Related]

  • 14. Surface modification of biodegradable electrospun nanofiber scaffolds and their interaction with fibroblasts.
    Park K, Ju YM, Son JS, Ahn KD, Han DK.
    J Biomater Sci Polym Ed; 2007 Jul 24; 18(4):369-82. PubMed ID: 17540114
    [Abstract] [Full Text] [Related]

  • 15. Comparative Study of Poly (ε-Caprolactone) and Poly(Lactic-co-Glycolic Acid) -Based Nanofiber Scaffolds for pH-Sensing.
    Di W, Czarny RS, Fletcher NA, Krebs MD, Clark HA.
    Pharm Res; 2016 Oct 24; 33(10):2433-44. PubMed ID: 27380188
    [Abstract] [Full Text] [Related]

  • 16. Anterior cruciate ligament regeneration using braided biodegradable scaffolds: in vitro optimization studies.
    Lu HH, Cooper JA, Manuel S, Freeman JW, Attawia MA, Ko FK, Laurencin CT.
    Biomaterials; 2005 Aug 24; 26(23):4805-16. PubMed ID: 15763260
    [Abstract] [Full Text] [Related]

  • 17. Effect of cryomilling times on the resultant properties of porous biodegradable poly(e-caprolactone)/poly(glycolic acid) scaffolds for articular cartilage tissue engineering.
    Jonnalagadda JB, Rivero IV.
    J Mech Behav Biomed Mater; 2014 Dec 24; 40():33-41. PubMed ID: 25194523
    [Abstract] [Full Text] [Related]

  • 18. Electrospun chitosan-graft-poly (ε -caprolactone)/poly (ε-caprolactone) cationic nanofibrous mats as potential scaffolds for skin tissue engineering.
    Chen H, Huang J, Yu J, Liu S, Gu P.
    Int J Biol Macromol; 2011 Jan 01; 48(1):13-9. PubMed ID: 20933540
    [Abstract] [Full Text] [Related]

  • 19. The effect of poly (L-lactic acid) nanofiber orientation on osteogenic responses of human osteoblast-like MG63 cells.
    Wang B, Cai Q, Zhang S, Yang X, Deng X.
    J Mech Behav Biomed Mater; 2011 May 01; 4(4):600-9. PubMed ID: 21396609
    [Abstract] [Full Text] [Related]

  • 20. In vivo tissue response and degradation behavior of PLLA and stereocomplexed PLA nanofibers.
    Ishii D, Ying TH, Mahara A, Murakami S, Yamaoka T, Lee WK, Iwata T.
    Biomacromolecules; 2009 Feb 09; 10(2):237-42. PubMed ID: 19117403
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.