These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
401 related items for PubMed ID: 24296661
1. Two evolutionarily distinct classes of paleopolyploidy. Garsmeur O, Schnable JC, Almeida A, Jourda C, D'Hont A, Freeling M. Mol Biol Evol; 2014 Feb; 31(2):448-54. PubMed ID: 24296661 [Abstract] [Full Text] [Related]
2. Evaluating and Characterizing Ancient Whole-Genome Duplications in Plants with Gene Count Data. Tiley GP, Ané C, Burleigh JG. Genome Biol Evol; 2016 Apr 11; 8(4):1023-37. PubMed ID: 26988251 [Abstract] [Full Text] [Related]
3. Functional Divergence between Subgenomes and Gene Pairs after Whole Genome Duplications. Liang Z, Schnable JC. Mol Plant; 2018 Mar 05; 11(3):388-397. PubMed ID: 29275166 [Abstract] [Full Text] [Related]
4. Evolution by duplication: paleopolyploidy events in plants reconstructed by deciphering the evolutionary history of VOZ transcription factors. Gao B, Chen M, Li X, Liang Y, Zhu F, Liu T, Zhang D, Wood AJ, Oliver MJ, Zhang J. BMC Plant Biol; 2018 Oct 26; 18(1):256. PubMed ID: 30367626 [Abstract] [Full Text] [Related]
5. Persistence of subgenomes in paleopolyploid cotton after 60 my of evolution. Renny-Byfield S, Gong L, Gallagher JP, Wendel JF. Mol Biol Evol; 2015 Apr 26; 32(4):1063-71. PubMed ID: 25573906 [Abstract] [Full Text] [Related]
6. Evidence of interaction network evolution by whole-genome duplications: a case study in MADS-box proteins. Veron AS, Kaufmann K, Bornberg-Bauer E. Mol Biol Evol; 2007 Mar 26; 24(3):670-8. PubMed ID: 17175526 [Abstract] [Full Text] [Related]
7. The preferential retention of starch synthesis genes reveals the impact of whole-genome duplication on grass evolution. Wu Y, Zhu Z, Ma L, Chen M. Mol Biol Evol; 2008 Jun 26; 25(6):1003-6. PubMed ID: 18296698 [Abstract] [Full Text] [Related]
8. Effect of paleopolyploidy and allopolyploidy on gene expression in banana. Cenci A, Hueber Y, Zorrilla-Fontanesi Y, van Wesemael J, Kissel E, Gislard M, Sardos J, Swennen R, Roux N, Carpentier SC, Rouard M. BMC Genomics; 2019 Mar 27; 20(1):244. PubMed ID: 30917780 [Abstract] [Full Text] [Related]
9. Patterns and Consequences of Subgenome Differentiation Provide Insights into the Nature of Paleopolyploidy in Plants. Zhao M, Zhang B, Lisch D, Ma J. Plant Cell; 2017 Dec 27; 29(12):2974-2994. PubMed ID: 29180596 [Abstract] [Full Text] [Related]
10. Evolutionary dynamics and functional specialization of plant paralogs formed by whole and small-scale genome duplications. Carretero-Paulet L, Fares MA. Mol Biol Evol; 2012 Nov 27; 29(11):3541-51. PubMed ID: 22734049 [Abstract] [Full Text] [Related]
11. Polyploidy and genome evolution in plants. Soltis PS, Marchant DB, Van de Peer Y, Soltis DE. Curr Opin Genet Dev; 2015 Dec 27; 35():119-25. PubMed ID: 26656231 [Abstract] [Full Text] [Related]
12. Fractionation mutagenesis and similar consequences of mechanisms removing dispensable or less-expressed DNA in plants. Freeling M, Woodhouse MR, Subramaniam S, Turco G, Lisch D, Schnable JC. Curr Opin Plant Biol; 2012 Apr 27; 15(2):131-9. PubMed ID: 22341793 [Abstract] [Full Text] [Related]
13. Distinct Expression and Methylation Patterns for Genes with Different Fates following a Single Whole-Genome Duplication in Flowering Plants. Shi T, Rahmani RS, Gugger PF, Wang M, Li H, Zhang Y, Li Z, Wang Q, Van de Peer Y, Marchal K, Chen J. Mol Biol Evol; 2020 Aug 01; 37(8):2394-2413. PubMed ID: 32343808 [Abstract] [Full Text] [Related]
14. Phylogenomics reveals an extensive history of genome duplication in diatoms (Bacillariophyta). Parks MB, Nakov T, Ruck EC, Wickett NJ, Alverson AJ. Am J Bot; 2018 Mar 01; 105(3):330-347. PubMed ID: 29665021 [Abstract] [Full Text] [Related]
15. Extensive divergence in alternative splicing patterns after gene and genome duplication during the evolutionary history of Arabidopsis. Zhang PG, Huang SZ, Pin AL, Adams KL. Mol Biol Evol; 2010 Jul 01; 27(7):1686-97. PubMed ID: 20185454 [Abstract] [Full Text] [Related]
16. Genetic Contribution of Paleopolyploidy to Adaptive Evolution in Angiosperms. Wu S, Han B, Jiao Y. Mol Plant; 2020 Jan 06; 13(1):59-71. PubMed ID: 31678615 [Abstract] [Full Text] [Related]
17. Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. Blanc G, Wolfe KH. Plant Cell; 2004 Jul 06; 16(7):1667-78. PubMed ID: 15208399 [Abstract] [Full Text] [Related]
18. A Phylogenomic Assessment of Ancient Polyploidy and Genome Evolution across the Poales. McKain MR, Tang H, McNeal JR, Ayyampalayam S, Davis JI, dePamphilis CW, Givnish TJ, Pires JC, Stevenson DW, Leebens-Mack JH. Genome Biol Evol; 2016 Apr 21; 8(4):1150-64. PubMed ID: 26988252 [Abstract] [Full Text] [Related]
19. Inferring putative ancient whole-genome duplications in the 1000 Plants (1KP) initiative: access to gene family phylogenies and age distributions. Li Z, Barker MS. Gigascience; 2020 Feb 01; 9(2):. PubMed ID: 32043527 [Abstract] [Full Text] [Related]
20. Tissue-specific gene expression and protein abundance patterns are associated with fractionation bias in maize. Walsh JR, Woodhouse MR, Andorf CM, Sen TZ. BMC Plant Biol; 2020 Jan 03; 20(1):4. PubMed ID: 31900107 [Abstract] [Full Text] [Related] Page: [Next] [New Search]