These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


284 related items for PubMed ID: 24296983

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. A simple microfluidic device for the deformability assessment of blood cells in a continuous flow.
    Rodrigues RO, Pinho D, Faustino V, Lima R.
    Biomed Microdevices; 2015 Dec; 17(6):108. PubMed ID: 26482154
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. [Usefulness of frozen-thawed-deglycerolized red blood cells as quality control materials for red blood cell deformability test].
    Kim YK, Won DI, Kim HO, Shin S, Suh JS.
    Korean J Lab Med; 2010 Dec; 30(6):697-701. PubMed ID: 21157158
    [Abstract] [Full Text] [Related]

  • 6. Transfusion of stored red blood cells adhere in the rat microvasculature.
    Chin-Yee IH, Gray-Statchuk L, Milkovich S, Ellis CG.
    Transfusion; 2009 Nov; 49(11):2304-10. PubMed ID: 19624601
    [Abstract] [Full Text] [Related]

  • 7. Optofluidic laser speckle image decorrelation analysis for the assessment of red blood cell storage.
    Jeon HJ, Qureshi MM, Lee SY, Chung E.
    PLoS One; 2019 Nov; 14(10):e0224036. PubMed ID: 31639179
    [Abstract] [Full Text] [Related]

  • 8. An automated cell analysis sensing system based on a microfabricated rheoscope for the study of red blood cells physiology.
    Bransky A, Korin N, Nemirovski Y, Dinnar U.
    Biosens Bioelectron; 2006 Aug 15; 22(2):165-9. PubMed ID: 16426836
    [Abstract] [Full Text] [Related]

  • 9. Microfluidic deformability analysis of the red cell storage lesion.
    Matthews K, Myrand-Lapierre ME, Ang RR, Duffy SP, Scott MD, Ma H.
    J Biomech; 2015 Nov 26; 48(15):4065-4072. PubMed ID: 26477408
    [Abstract] [Full Text] [Related]

  • 10. Theoretical model and experimental study of red blood cell (RBC) deformation in microchannels.
    Korin N, Bransky A, Dinnar U.
    J Biomech; 2007 Nov 26; 40(9):2088-95. PubMed ID: 17188279
    [Abstract] [Full Text] [Related]

  • 11. Effect of blood bank storage on the rheological properties of male and female donor red blood cells.
    Daly A, Raval JS, Waters JH, Yazer MH, Kameneva MV.
    Clin Hemorheol Microcirc; 2014 Nov 26; 56(4):337-45. PubMed ID: 23818106
    [Abstract] [Full Text] [Related]

  • 12. Analysis of red blood cells' dynamic status in a simulated blood circulation system using an ultrahigh-speed simultaneous framing optical electronic camera.
    Zhang Q, Li Z, Zhao S, Wen W, Chang L, Yu H, Jiang T.
    Cytometry A; 2017 Feb 26; 91(2):126-132. PubMed ID: 27517614
    [Abstract] [Full Text] [Related]

  • 13. Microconfined flow behavior of red blood cells.
    Tomaiuolo G, Lanotte L, D'Apolito R, Cassinese A, Guido S.
    Med Eng Phys; 2016 Jan 26; 38(1):11-6. PubMed ID: 26071649
    [Abstract] [Full Text] [Related]

  • 14. Start-up shape dynamics of red blood cells in microcapillary flow.
    Tomaiuolo G, Guido S.
    Microvasc Res; 2011 Jul 26; 82(1):35-41. PubMed ID: 21397612
    [Abstract] [Full Text] [Related]

  • 15. Electrical measurement of red blood cell deformability on a microfluidic device.
    Zheng Y, Nguyen J, Wang C, Sun Y.
    Lab Chip; 2013 Aug 21; 13(16):3275-83. PubMed ID: 23798004
    [Abstract] [Full Text] [Related]

  • 16. Microfluidic analysis of cellular deformability of normal and oxidatively damaged red blood cells.
    Kwan JM, Guo Q, Kyluik-Price DL, Ma H, Scott MD.
    Am J Hematol; 2013 Aug 21; 88(8):682-9. PubMed ID: 23674388
    [Abstract] [Full Text] [Related]

  • 17. Correlation between erythrocytes deformability and size: a study using a microchannel based cell analyzer.
    Bransky A, Korin N, Nemirovski Y, Dinnar U.
    Microvasc Res; 2007 Jan 21; 73(1):7-13. PubMed ID: 17123552
    [Abstract] [Full Text] [Related]

  • 18. Deformability measurement of red blood cells using a microfluidic channel array and an air cavity in a driving syringe with high throughput and precise detection of subpopulations.
    Kang YJ, Ha YR, Lee SJ.
    Analyst; 2016 Jan 07; 141(1):319-30. PubMed ID: 26616556
    [Abstract] [Full Text] [Related]

  • 19. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.
    Polwaththe-Gallage HN, Saha SC, Sauret E, Flower R, Senadeera W, Gu Y.
    Biomed Eng Online; 2016 Dec 28; 15(Suppl 2):161. PubMed ID: 28155717
    [Abstract] [Full Text] [Related]

  • 20. Numerical and experimental study on the development of electric sensor as for measurement of red blood cell deformability in microchannels.
    Tatsumi K, Katsumoto Y, Fujiwara R, Nakabe K.
    Sensors (Basel); 2012 Dec 28; 12(8):10566-83. PubMed ID: 23112616
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.