These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
191 related items for PubMed ID: 24297330
1. Structural characterization of rhamnolipid produced by Pseudomonas aeruginosa strain FIN2 isolated from oil reservoir water. Liu JF, Wu G, Yang SZ, Mu BZ. World J Microbiol Biotechnol; 2014 May; 30(5):1473-84. PubMed ID: 24297330 [Abstract] [Full Text] [Related]
2. High-Yield Di-Rhamnolipid Production by Pseudomonas aeruginosa YM4 and its Potential Application in MEOR. Li Z, Zhang Y, Lin J, Wang W, Li S. Molecules; 2019 Apr 11; 24(7):. PubMed ID: 30979013 [Abstract] [Full Text] [Related]
3. Chemical characterization and physical and biological activities of rhamnolipids produced by Pseudomonas aeruginosa BN10. Christova N, Tuleva B, Cohenb R, Ivanova G, Stoevd G, Stoilova-Disheva M, Stoineva I. Z Naturforsch C J Biosci; 2011 Apr 11; 66(7-8):394-402. PubMed ID: 21950164 [Abstract] [Full Text] [Related]
4. Production and characterization of rhamnolipid biosurfactant from waste frying coconut oil using a novel Pseudomonas aeruginosa D. George S, Jayachandran K. J Appl Microbiol; 2013 Feb 11; 114(2):373-83. PubMed ID: 23164038 [Abstract] [Full Text] [Related]
6. Bioconversion of agro-industrial by-products in rhamnolipids toward applications in enhanced oil recovery and bioremediation. Gudiña EJ, Rodrigues AI, Alves E, Domingues MR, Teixeira JA, Rodrigues LR. Bioresour Technol; 2015 Feb 11; 177():87-93. PubMed ID: 25479398 [Abstract] [Full Text] [Related]
7. Structural characterization of a rhamnolipid-type biosurfactant produced by Pseudomonas aeruginosa MR01: enhancement of di-rhamnolipid proportion using gamma irradiation. Lotfabad TB, Abassi H, Ahmadkhaniha R, Roostaazad R, Masoomi F, Zahiri HS, Ahmadian G, Vali H, Noghabi KA. Colloids Surf B Biointerfaces; 2010 Dec 01; 81(2):397-405. PubMed ID: 20732795 [Abstract] [Full Text] [Related]
8. Rapid and solitary production of mono-rhamnolipid biosurfactant and biofilm inhibiting pyocyanin by a taxonomic outlier Pseudomonas aeruginosa strain CR1. Sood U, Singh DN, Hira P, Lee JK, Kalia VC, Lal R, Shakarad M. J Biotechnol; 2020 Jan 10; 307():98-106. PubMed ID: 31705932 [Abstract] [Full Text] [Related]
10. Characterisation and antimicrobial activity of biosurfactant extracts produced by Bacillus amyloliquefaciens and Pseudomonas aeruginosa isolated from a wastewater treatment plant. Ndlovu T, Rautenbach M, Vosloo JA, Khan S, Khan W. AMB Express; 2017 Dec 10; 7(1):108. PubMed ID: 28571306 [Abstract] [Full Text] [Related]
11. A Rare Mono-Rhamnolipid Congener Efficiently Produced by Recombinant Pseudomonas aeruginosa YM4 via the Expression of Global Transcriptional Regulator irrE. Wang X, Li D, Yue S, Yuan Z, Li S. Molecules; 2024 Apr 26; 29(9):. PubMed ID: 38731483 [Abstract] [Full Text] [Related]
12. [Purification and characterization of the biosurfactant rhamnolipid]. Liu Y, Zhong H, Liu Z, Jiang Y, Tan F, Zeng G, Lai M, He Y. Se Pu; 2014 Mar 26; 32(3):248-55. PubMed ID: 24984464 [Abstract] [Full Text] [Related]
13. Characterization of rhamnolipid biosurfactants produced by recombinant Pseudomonas aeruginosa strain DAB with removal of crude oil. He C, Dong W, Li J, Li Y, Huang C, Ma Y. Biotechnol Lett; 2017 Sep 26; 39(9):1381-1388. PubMed ID: 28600649 [Abstract] [Full Text] [Related]
14. Two schemes for production of biosurfactant from Pseudomonas aeruginosa MR01: Applying residues from soybean oil industry and silica sol-gel immobilized cells. Bagheri Lotfabad T, Ebadipour N, Roostaazad R, Partovi M, Bahmaei M. Colloids Surf B Biointerfaces; 2017 Apr 01; 152():159-168. PubMed ID: 28110037 [Abstract] [Full Text] [Related]
15. High mono-rhamnolipids production by a novel isolate Pseudomonas aeruginosa LP20 from oily sludge: characterization, optimization, and potential application. Li C, Wang Y, Zhou L, Cui Q, Sun W, Yang J, Su H, Zhao F. Lett Appl Microbiol; 2024 Feb 01; 77(2):. PubMed ID: 38366661 [Abstract] [Full Text] [Related]
16. Carbon spectrum utilization by an indigenous strain of Pseudomonas aeruginosa NCIM 5514: Production, characterization and surface active properties of biosurfactant. Varjani SJ, Upasani VN. Bioresour Technol; 2016 Dec 01; 221():510-516. PubMed ID: 27677153 [Abstract] [Full Text] [Related]
17. Production of rhamnolipids by the Thermoanaerobacter sp. CM-CNRG TB177 strain isolated from an oil well in Mexico. Segovia V, Reyes A, Rivera G, Vázquez P, Velazquez G, Paz-González A, Hernández-Gama R. Appl Microbiol Biotechnol; 2021 Aug 01; 105(14-15):5833-5844. PubMed ID: 34396489 [Abstract] [Full Text] [Related]
18. Quantitative determination of rhamnolipid using HPLC-UV through carboxyl labeling. Zhou J, Miao SJ, Yang SZ, Liu JF, Gang HZ, Mu BZ. Biotechnol Appl Biochem; 2023 Dec 01; 70(6):1806-1816. PubMed ID: 37278163 [Abstract] [Full Text] [Related]
19. Optimization and characterization of biosurfactant production from kitchen waste oil using Pseudomonas aeruginosa. Chen C, Sun N, Li D, Long S, Tang X, Xiao G, Wang L. Environ Sci Pollut Res Int; 2018 May 01; 25(15):14934-14943. PubMed ID: 29549612 [Abstract] [Full Text] [Related]
20. Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Nitschke M, Costa SG, Haddad R, Gonçalves LA, Eberlin MN, Contiero J. Biotechnol Prog; 2005 May 01; 21(5):1562-6. PubMed ID: 16209563 [Abstract] [Full Text] [Related] Page: [Next] [New Search]