These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
198 related items for PubMed ID: 24302999
1. Next-generation sequencing-based transcriptome analysis of Helicoverpa armigera Larvae immune-primed with Photorhabdus luminescens TT01. Zhao Z, Wu G, Wang J, Liu C, Qiu L. PLoS One; 2013; 8(11):e80146. PubMed ID: 24302999 [Abstract] [Full Text] [Related]
2. RNA-seq profiles of putative genes involved in specific immune priming in Bombyx mori haemocytes. Yi Y, Xu H, Li M, Wu G. Infect Genet Evol; 2019 Oct; 74():103921. PubMed ID: 31207402 [Abstract] [Full Text] [Related]
3. No evidence for priming response in Galleria mellonella larvae exposed to toxin protein PirA2B2 from Photorhabdus luminescens TT01: An association with the inhibition of the host cellular immunity. Wu G, Yi Y, Sun J, Li M, Qiu L. Vaccine; 2015 Nov 17; 33(46):6307-13. PubMed ID: 26432910 [Abstract] [Full Text] [Related]
4. Priming Galleria mellonella (Lepidoptera: Pyralidae) larvae with heat-killed bacterial cells induced an enhanced immune protection against Photorhabdus luminescens TT01 and the role of innate immunity in the process. Wu G, Zhao Z, Liu C, Qiu L. J Econ Entomol; 2014 Apr 17; 107(2):559-69. PubMed ID: 24772535 [Abstract] [Full Text] [Related]
5. Galleria mellonella larvae are capable of sensing the extent of priming agent and mounting proportionatal cellular and humoral immune responses. Wu G, Xu L, Yi Y. Immunol Lett; 2016 Jun 17; 174():45-52. PubMed ID: 27107784 [Abstract] [Full Text] [Related]
6. The lipopolysaccharide (LPS) of Photorhabdus luminescens TT01 can elicit dose- and time-dependent immune priming in Galleria mellonella larvae. Wu G, Yi Y, Lv Y, Li M, Wang J, Qiu L. J Invertebr Pathol; 2015 May 17; 127():63-72. PubMed ID: 25796336 [Abstract] [Full Text] [Related]
7. High throughput profiling of the cotton bollworm Helicoverpa armigera immunotranscriptome during the fungal and bacterial infections. Xiong GH, Xing LS, Lin Z, Saha TT, Wang C, Jiang H, Zou Z. BMC Genomics; 2015 Apr 18; 16(1):321. PubMed ID: 26001831 [Abstract] [Full Text] [Related]
8. Transcriptome analysis of differentially expressed genes involved in innate immunity following Bacillus thuringiensis challenge in Bombyx mori larvae. Wu G, Yi Y. Mol Immunol; 2018 Nov 18; 103():220-228. PubMed ID: 30316186 [Abstract] [Full Text] [Related]
9. Identification of Genes Putatively Involved in Chitin Metabolism and Insecticide Detoxification in the Rice Leaf Folder (Cnaphalocrocis medinalis) Larvae through Transcriptomic Analysis. Yu HZ, Wen DF, Wang WL, Geng L, Zhang Y, Xu JP. Int J Mol Sci; 2015 Sep 10; 16(9):21873-96. PubMed ID: 26378520 [Abstract] [Full Text] [Related]
10. Combinatorial effect of Photorhabdus luminescens TT01 and Bacillus thuringiensis Vip3Aa16 toxin against Agrotis segetum. Jallouli W, Boukedi H, Sellami S, Frikha F, Abdelkefi-Mesrati L, Tounsi S. Toxicon; 2018 Feb 10; 142():52-57. PubMed ID: 29305079 [Abstract] [Full Text] [Related]
11. De Novo Assembly and Characterization of the Transcriptome of Grasshopper Shirakiacris shirakii. Qiu Z, Liu F, Lu H, Yuan H, Zhang Q, Huang Y. Int J Mol Sci; 2016 Jul 22; 17(7):. PubMed ID: 27455245 [Abstract] [Full Text] [Related]
12. De novo assembly and characterization of the global transcriptome for Rhyacionia leptotubula using Illumina paired-end sequencing. Zhu JY, Li YH, Yang S, Li QW. PLoS One; 2013 Jul 22; 8(11):e81096. PubMed ID: 24278383 [Abstract] [Full Text] [Related]
13. Changes in Caenorhabditis elegans gene expression following exposure to Photorhabdus luminescens strain TT01. Hoinville ME, Wollenberg AC. Dev Comp Immunol; 2018 May 22; 82():165-176. PubMed ID: 29203330 [Abstract] [Full Text] [Related]
14. De novo transcriptome characterization of the ghost moth, Thitarodes pui, and elevation-based differences in the gene expression of its larvae. Wu W, Sun H, Guo J, Jiang F, Liu X, Zhang G. Gene; 2015 Dec 10; 574(1):95-105. PubMed ID: 26235680 [Abstract] [Full Text] [Related]
15. The specificity of immune priming in silkworm, Bombyx mori, is mediated by the phagocytic ability of granular cells. Wu G, Li M, Liu Y, Ding Y, Yi Y. J Insect Physiol; 2015 Oct 10; 81():60-8. PubMed ID: 26159492 [Abstract] [Full Text] [Related]
16. Antimicrobial peptide repertoire of Thitarodes armoricanus, a host species of Ophiocordyceps sinensis, predicted based on de novo transcriptome sequencing and analysis. Wang M, Hu X. Infect Genet Evol; 2017 Oct 10; 54():238-244. PubMed ID: 28705718 [Abstract] [Full Text] [Related]
17. RNA-seq of Rice Yellow Stem Borer Scirpophaga incertulas Reveals Molecular Insights During Four Larval Developmental Stages. Renuka P, Madhav MS, Padmakumari AP, Barbadikar KM, Mangrauthia SK, Vijaya Sudhakara Rao K, Marla SS, Ravindra Babu V. G3 (Bethesda); 2017 Sep 07; 7(9):3031-3045. PubMed ID: 28717048 [Abstract] [Full Text] [Related]
18. Molecular characterization of immune responses of Helicoverpa armigera to infection with the mermithid nematode Ovomermis sinensis. Wang GJ, Zhuo XR, Wang WW, Liu XS, Wang GX, Wang JL. BMC Genomics; 2019 Feb 27; 20(1):161. PubMed ID: 30813894 [Abstract] [Full Text] [Related]
19. Dynamics of the Interaction between Cotton Bollworm Helicoverpa armigera and Nucleopolyhedrovirus as Revealed by Integrated Transcriptomic and Proteomic Analyses. Xing L, Yuan C, Wang M, Lin Z, Shen B, Hu Z, Zou Z. Mol Cell Proteomics; 2017 Jun 27; 16(6):1009-1028. PubMed ID: 28404795 [Abstract] [Full Text] [Related]
20. High-throughput sequencing to reveal genes involved in reproduction and development in Bactrocera dorsalis (Diptera: Tephritidae). Zheng W, Peng T, He W, Zhang H. PLoS One; 2012 Jun 27; 7(5):e36463. PubMed ID: 22570719 [Abstract] [Full Text] [Related] Page: [Next] [New Search]