These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
934 related items for PubMed ID: 24315553
1. An LCA model for waste incineration enhanced with new technologies for metal recovery and application to the case of Switzerland. Boesch ME, Vadenbo C, Saner D, Huter C, Hellweg S. Waste Manag; 2014 Feb; 34(2):378-89. PubMed ID: 24315553 [Abstract] [Full Text] [Related]
2. Optimal utilization of waste-to-energy in an LCA perspective. Fruergaard T, Astrup T. Waste Manag; 2011 Mar; 31(3):572-82. PubMed ID: 20937557 [Abstract] [Full Text] [Related]
3. Energy from Waste--clean, efficient, renewable: transitions in combustion efficiency and NOx control. Waldner MH, Halter R, Sigg A, Brosch B, Gehrmann HJ, Keunecke M. Waste Manag; 2013 Feb; 33(2):317-26. PubMed ID: 23044260 [Abstract] [Full Text] [Related]
4. Mitigation of global greenhouse gas emissions from waste: conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Bogner J, Pipatti R, Hashimoto S, Diaz C, Mareckova K, Diaz L, Kjeldsen P, Monni S, Faaij A, Gao Q, Zhang T, Ahmed MA, Sutamihardja RT, Gregory R, Intergovernmental Panel on Climate Change (IPCC) Working Group III (Mitigation). Waste Manag Res; 2008 Feb; 26(1):11-32. PubMed ID: 18338699 [Abstract] [Full Text] [Related]
5. Assessing the environmental sustainability of energy recovery from municipal solid waste in the UK. Jeswani HK, Azapagic A. Waste Manag; 2016 Apr; 50():346-63. PubMed ID: 26906085 [Abstract] [Full Text] [Related]
6. Assessment of the greenhouse effect impact of technologies used for energy recovery from municipal waste: a case for England. Papageorgiou A, Barton JR, Karagiannidis A. J Environ Manage; 2009 Jul; 90(10):2999-3012. PubMed ID: 19482412 [Abstract] [Full Text] [Related]
7. Life cycle assessment of disposal of residues from municipal solid waste incineration: recycling of bottom ash in road construction or landfilling in Denmark evaluated in the ROAD-RES model. Birgisdóttir H, Bhander G, Hauschild MZ, Christensen TH. Waste Manag; 2007 Jul; 27(8):S75-84. PubMed ID: 17416511 [Abstract] [Full Text] [Related]
8. Solid residues from Italian municipal solid waste incinerators: A source for "critical" raw materials. Funari V, Braga R, Bokhari SN, Dinelli E, Meisel T. Waste Manag; 2015 Nov; 45():206-16. PubMed ID: 25512234 [Abstract] [Full Text] [Related]
9. The environmental performance of enhanced metal recovery from dry municipal solid waste incineration bottom ash. Mehr J, Haupt M, Skutan S, Morf L, Raka Adrianto L, Weibel G, Hellweg S. Waste Manag; 2021 Jan 01; 119():330-341. PubMed ID: 33125941 [Abstract] [Full Text] [Related]
10. Life cycle assessment of waste incineration in Denmark and Italy using two LCA models. Turconi R, Butera S, Boldrin A, Grosso M, Rigamonti L, Astrup T. Waste Manag Res; 2011 Oct 01; 29(10 Suppl):78-90. PubMed ID: 21930527 [Abstract] [Full Text] [Related]
11. Energy implications of mechanical and mechanical-biological treatment compared to direct waste-to-energy. Cimpan C, Wenzel H. Waste Manag; 2013 Jul 01; 33(7):1648-58. PubMed ID: 23660494 [Abstract] [Full Text] [Related]
12. Life-cycle assessment (EASEWASTE) of two municipal solid waste incineration technologies in China. Chen D, Christensen TH. Waste Manag Res; 2010 Jun 01; 28(6):508-19. PubMed ID: 20375128 [Abstract] [Full Text] [Related]
13. Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE). Riber C, Bhander GS, Christensen TH. Waste Manag Res; 2008 Feb 01; 26(1):96-103. PubMed ID: 18338706 [Abstract] [Full Text] [Related]
14. Environmental impacts of residual municipal solid waste incineration: a comparison of 110 French incinerators using a life cycle approach. Beylot A, Villeneuve J. Waste Manag; 2013 Dec 01; 33(12):2781-8. PubMed ID: 23910245 [Abstract] [Full Text] [Related]
15. Wide-scale utilization of MSWI fly ashes in cement production and its impact on average heavy metal contents in cements: The case of Austria. Lederer J, Trinkel V, Fellner J. Waste Manag; 2017 Feb 01; 60():247-258. PubMed ID: 27815031 [Abstract] [Full Text] [Related]
16. Classification and categorization of treatment methods for ash generated by municipal solid waste incineration: a case for the 2 greater metropolitan regions of Greece. Karagiannidis A, Kontogianni S, Logothetis D. Waste Manag; 2013 Feb 01; 33(2):363-72. PubMed ID: 23206519 [Abstract] [Full Text] [Related]
17. Urban mining of municipal solid waste incineration (MSWI) residues with emphasis on bioleaching technologies: a critical review. Funari V, Toller S, Vitale L, Santos RM, Gomes HI. Environ Sci Pollut Res Int; 2023 May 01; 30(21):59128-59150. PubMed ID: 37041362 [Abstract] [Full Text] [Related]
18. A historical perspective of Global Warming Potential from Municipal Solid Waste Management. Habib K, Schmidt JH, Christensen P. Waste Manag; 2013 Sep 01; 33(9):1926-33. PubMed ID: 23769238 [Abstract] [Full Text] [Related]
19. Melting of municipal solid waste incinerator fly ash by waste-derived thermite reaction. Wang KS, Lin KL, Lee CH. J Hazard Mater; 2009 Feb 15; 162(1):338-43. PubMed ID: 18573610 [Abstract] [Full Text] [Related]
20. Incineration and co-combustion of waste: accounting of greenhouse gases and global warming contributions. Astrup T, Møller J, Fruergaard T. Waste Manag Res; 2009 Nov 15; 27(8):789-99. PubMed ID: 19748939 [Abstract] [Full Text] [Related] Page: [Next] [New Search]