These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


334 related items for PubMed ID: 24320301

  • 1. Chain conformations of ring polymers under theta conditions studied by Monte Carlo simulation.
    Suzuki J, Takano A, Matsushita Y.
    J Chem Phys; 2013 Nov 14; 139(18):184904. PubMed ID: 24320301
    [Abstract] [Full Text] [Related]

  • 2. Topological constraint in ring polymers under theta conditions studied by Monte Carlo simulation.
    Suzuki J, Takano A, Matsushita Y.
    J Chem Phys; 2013 Jan 14; 138(2):024902. PubMed ID: 23320716
    [Abstract] [Full Text] [Related]

  • 3. The theta-temperature depression caused by topological effect in ring polymers studied by Monte Carlo simulation.
    Suzuki J, Takano A, Matsushita Y.
    J Chem Phys; 2011 Nov 28; 135(20):204903. PubMed ID: 22128955
    [Abstract] [Full Text] [Related]

  • 4. Interactions between ring polymers in dilute solution studied by Monte Carlo simulation.
    Suzuki J, Takano A, Matsushita Y.
    J Chem Phys; 2015 Jan 28; 142(4):044904. PubMed ID: 25638006
    [Abstract] [Full Text] [Related]

  • 5. Dimensions of catenated ring polymers in dilute solution studied by Monte-Carlo simulation.
    Suzuki J, Takano A, Matsushita Y.
    J Chem Phys; 2018 Nov 28; 149(20):204901. PubMed ID: 30501266
    [Abstract] [Full Text] [Related]

  • 6. Topological effect in ring polymers investigated with Monte Carlo simulation.
    Suzuki J, Takano A, Matsushita Y.
    J Chem Phys; 2008 Jul 21; 129(3):034903. PubMed ID: 18647044
    [Abstract] [Full Text] [Related]

  • 7. Dimension of ring polymers in bulk studied by Monte-Carlo simulation and self-consistent theory.
    Suzuki J, Takano A, Deguchi T, Matsushita Y.
    J Chem Phys; 2009 Oct 14; 131(14):144902. PubMed ID: 19831464
    [Abstract] [Full Text] [Related]

  • 8. Properties of knotted ring polymers. I. Equilibrium dimensions.
    Mansfield ML, Douglas JF.
    J Chem Phys; 2010 Jul 28; 133(4):044903. PubMed ID: 20687682
    [Abstract] [Full Text] [Related]

  • 9. Monte Carlo simulation studies of ring polymers at athermal and theta conditions.
    Fuereder I, Zifferer G.
    J Chem Phys; 2011 Nov 14; 135(18):184906. PubMed ID: 22088080
    [Abstract] [Full Text] [Related]

  • 10. Macromolecular knot in good and poor solvents: a Monte Carlo simulation.
    Sun HQ, Zhang L, Liao Q.
    J Phys Chem B; 2010 Sep 30; 114(38):12293-7. PubMed ID: 20825151
    [Abstract] [Full Text] [Related]

  • 11. Size of knots in ring polymers.
    Marcone B, Orlandini E, Stella AL, Zonta F.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr 30; 75(4 Pt 1):041105. PubMed ID: 17500863
    [Abstract] [Full Text] [Related]

  • 12. Effects of topology on the adsorption of singly tethered ring polymers to attractive surfaces.
    Li B, Sun ZY, An LJ.
    J Chem Phys; 2015 Jul 14; 143(2):024908. PubMed ID: 26178128
    [Abstract] [Full Text] [Related]

  • 13. Gyration radius of a circular polymer under a topological constraint with excluded volume.
    Shimamura MK, Deguchi T.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Aug 14; 64(2 Pt 1):020801. PubMed ID: 11497553
    [Abstract] [Full Text] [Related]

  • 14. Mean-Square Radius of Gyration and Scattering Function of Semiflexible Ring Polymers of the Trefoil Knot.
    Abe H, Ida D.
    Polymers (Basel); 2016 Jul 27; 8(8):. PubMed ID: 30974548
    [Abstract] [Full Text] [Related]

  • 15. Adsorption of a single polymer chain on a surface: effects of the potential range.
    Klushin LI, Polotsky AA, Hsu HP, Markelov DA, Binder K, Skvortsov AM.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Feb 27; 87(2):022604. PubMed ID: 23496541
    [Abstract] [Full Text] [Related]

  • 16. Computer simulation of linkage of two ring chains.
    Xiong Z, Han CC, Liao Q.
    J Chem Phys; 2012 Apr 07; 136(13):134902. PubMed ID: 22482585
    [Abstract] [Full Text] [Related]

  • 17. Finite-size and asymptotic behaviors of the gyration radius of knotted cylindrical self-avoiding polygons.
    Shimamura MK, Deguchi T.
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 May 07; 65(5 Pt 1):051802. PubMed ID: 12059583
    [Abstract] [Full Text] [Related]

  • 18. Concentration Dependence of Ring Polymer Conformations from Monte Carlo Simulations.
    Reigh SY, Yoon DY.
    ACS Macro Lett; 2013 Apr 16; 2(4):296-300. PubMed ID: 35581754
    [Abstract] [Full Text] [Related]

  • 19. Effect of solvent quality on the conformations of a model comb polymer.
    Sheng YJ, Cheng KL, Ho CC.
    J Chem Phys; 2004 Jul 22; 121(4):1962-8. PubMed ID: 15260748
    [Abstract] [Full Text] [Related]

  • 20. Development of knotting during the collapse transition of polymers.
    Mansfield ML.
    J Chem Phys; 2007 Dec 28; 127(24):244902. PubMed ID: 18163701
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.