These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


199 related items for PubMed ID: 2433173

  • 1. Anterograde tracing of retinal axons in the avian embryo with low molecular weight derivatives of biotin.
    Halfter W.
    Dev Biol; 1987 Feb; 119(2):322-35. PubMed ID: 2433173
    [Abstract] [Full Text] [Related]

  • 2. Axon growth in embryonic chick and quail retinal whole mounts in vitro.
    Halfter W, Deiss S.
    Dev Biol; 1984 Apr; 102(2):344-55. PubMed ID: 6200372
    [Abstract] [Full Text] [Related]

  • 3. Aberrant optic axons in the retinal pigment epithelium during chick and quail visual pathway development.
    Halfter W.
    J Comp Neurol; 1988 Feb 08; 268(2):161-70. PubMed ID: 3360983
    [Abstract] [Full Text] [Related]

  • 4. Axonal pathfinding in organ-cultured embryonic avian retinae.
    Halfter W, Deiss S.
    Dev Biol; 1986 Apr 08; 114(2):296-310. PubMed ID: 3956870
    [Abstract] [Full Text] [Related]

  • 5. Expression of presynaptic proteins is closely correlated with the chronotopic pattern of axons in the retinotectal system of the chick.
    Bergmann M, Grabs D, Rager G.
    J Comp Neurol; 2000 Mar 13; 418(3):361-72. PubMed ID: 10701832
    [Abstract] [Full Text] [Related]

  • 6. The formation of the axonal pattern in the embryonic avian retina.
    Halfter W, Deiss S, Schwarz U.
    J Comp Neurol; 1985 Feb 22; 232(4):466-80. PubMed ID: 3980764
    [Abstract] [Full Text] [Related]

  • 7. Intraretinal grafting reveals growth requirements and guidance cues for optic axons in the developing avian retina.
    Halfter W.
    Dev Biol; 1996 Jul 10; 177(1):160-77. PubMed ID: 8660885
    [Abstract] [Full Text] [Related]

  • 8. The optic tract in embryonic hamsters: fasciculation, defasciculation, and other rearrangements of retinal axons.
    Jhaveri S, Erzurumlu RS, Schneider GE.
    Vis Neurosci; 1996 Jul 10; 13(2):359-74. PubMed ID: 8737287
    [Abstract] [Full Text] [Related]

  • 9. Organization of retinal axons within the optic nerve, optic chiasm, and the innervation of multiple central nervous system targets Rana pipiens.
    Montgomery NM, Tyler C, Fite KV.
    J Comp Neurol; 1998 Dec 14; 402(2):222-37. PubMed ID: 9845245
    [Abstract] [Full Text] [Related]

  • 10. The early development of retinal ganglion cells with uncrossed axons in the mouse: retinal position and axonal course.
    Colello RJ, Guillery RW.
    Development; 1990 Mar 14; 108(3):515-23. PubMed ID: 2340812
    [Abstract] [Full Text] [Related]

  • 11. Expression of the axonal cell adhesion molecules axonin-1 and Ng-CAM during the development of the chick retinotectal system.
    Rager G, Morino P, Schnitzer J, Sonderegger P.
    J Comp Neurol; 1996 Feb 19; 365(4):594-609. PubMed ID: 8742305
    [Abstract] [Full Text] [Related]

  • 12. Disruption of the retinal basal lamina during early embryonic development leads to a retraction of vitreal end feet, an increased number of ganglion cells, and aberrant axonal outgrowth.
    Halfter W.
    J Comp Neurol; 1998 Jul 20; 397(1):89-104. PubMed ID: 9671281
    [Abstract] [Full Text] [Related]

  • 13. The aberrant retino-retinal projection during optic nerve regeneration in the frog. II. Anterograde labeling with horseradish peroxidase.
    Bohn RC, Stelzner DJ.
    J Comp Neurol; 1981 Mar 10; 196(4):621-32. PubMed ID: 6970757
    [Abstract] [Full Text] [Related]

  • 14. Tenascin in the developing chick visual system: distribution and potential role as a modulator of retinal axon growth.
    Perez RG, Halfter W.
    Dev Biol; 1993 Mar 10; 156(1):278-92. PubMed ID: 7680630
    [Abstract] [Full Text] [Related]

  • 15. Precocious invasion of the optic stalk by transient retinopetal axons.
    Reese BE, Geller SF.
    J Comp Neurol; 1995 Mar 20; 353(4):572-84. PubMed ID: 7759616
    [Abstract] [Full Text] [Related]

  • 16. Chiasmatic course of temporal retinal axons in the developing ferret.
    Baker GE, Reese BE.
    J Comp Neurol; 1993 Apr 01; 330(1):95-104. PubMed ID: 8468406
    [Abstract] [Full Text] [Related]

  • 17. Nondirected axonal growth on basal lamina from avian embryonic neural retina.
    Halfter W, Reckhaus W, Kröger S.
    J Neurosci; 1987 Nov 01; 7(11):3712-22. PubMed ID: 3316528
    [Abstract] [Full Text] [Related]

  • 18. Potential role of Pax-2 in retinal axon navigation through the chick optic nerve stalk and optic chiasm.
    Thanos S, Püttmann S, Naskar R, Rose K, Langkamp-Flock M, Paulus W.
    J Neurobiol; 2004 Apr 01; 59(1):8-23. PubMed ID: 15007823
    [Abstract] [Full Text] [Related]

  • 19. Long-term survival of centrally projecting axons in the optic nerve of the frog following destruction of the retina.
    Matsumoto DE, Scalia F.
    J Comp Neurol; 1981 Oct 10; 202(1):135-55. PubMed ID: 6974743
    [Abstract] [Full Text] [Related]

  • 20. Development of the retinotectal system in normal quail embryos: cytoarchitectonic development and optic fiber innervation.
    Senut MC, Alvarado-Mallart RM.
    Brain Res; 1986 Sep 10; 394(1):123-40. PubMed ID: 2428449
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.