These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


256 related items for PubMed ID: 2433425

  • 41. The relationship between hyperthermia and glycogenolysis in 3,4-methylenedioxymethamphetamine-induced serotonin depletion in rats.
    Darvesh AS, Gudelsky GA.
    Neurotoxicol Teratol; 2004; 26(4):571-7. PubMed ID: 15203179
    [Abstract] [Full Text] [Related]

  • 42.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 43. Characterization of brain interactions with methylenedioxyamphetamine and methylenedioxymethamphetamine.
    Zaczek R, Hurt S, Culp S, De Souza EB.
    NIDA Res Monogr; 1989; 94():223-39. PubMed ID: 2575226
    [Abstract] [Full Text] [Related]

  • 44. Effect of a serotonin depleting regimen of 3,4-methylenedioxymethamphetamine (MDMA) on the subsequent stimulation of acetylcholine release in the rat prefrontal cortex.
    Nair SG, Gudelsky GA.
    Brain Res Bull; 2006 Apr 28; 69(4):382-7. PubMed ID: 16624669
    [Abstract] [Full Text] [Related]

  • 45. Antagonism of the neurotoxicity due to a single administration of methylenedioxymethamphetamine.
    Schmidt CJ, Black CK, Taylor VL.
    Eur J Pharmacol; 1990 May 31; 181(1-2):59-70. PubMed ID: 1974858
    [Abstract] [Full Text] [Related]

  • 46. Direct central effects of acute methylenedioxymethamphetamine on serotonergic neurons.
    Schmidt CJ, Taylor VL.
    Eur J Pharmacol; 1988 Oct 26; 156(1):121-31. PubMed ID: 2463176
    [Abstract] [Full Text] [Related]

  • 47. Methylenedioxymethamphetamine-induced hyperthermia and neurotoxicity are independently mediated by 5-HT2 receptors.
    Schmidt CJ, Black CK, Abbate GM, Taylor VL.
    Brain Res; 1990 Oct 08; 529(1-2):85-90. PubMed ID: 1980848
    [Abstract] [Full Text] [Related]

  • 48. Differences in the central serotonergic effects of methylenedioxymethamphetamine (MDMA) in mice and rats.
    Stone DM, Hanson GR, Gibb JW.
    Neuropharmacology; 1987 Nov 08; 26(11):1657-61. PubMed ID: 2448703
    [Abstract] [Full Text] [Related]

  • 49. Antagonism of 3,4-methylenedioxymethamphetamine-induced neurotoxicity in rat brain by 1-piperonylpiperazine.
    Hashimoto K, Maeda H, Goromaru T.
    Eur J Pharmacol; 1992 Sep 01; 228(2-3):171-4. PubMed ID: 1280228
    [Abstract] [Full Text] [Related]

  • 50. Neurotoxic effects of the alpha-ethyl homologue of MDMA following subacute administration.
    Johnson MP, Nichols DE.
    Pharmacol Biochem Behav; 1989 May 01; 33(1):105-8. PubMed ID: 2476831
    [Abstract] [Full Text] [Related]

  • 51. Disposition of methylenedioxymethamphetamine and three metabolites in the brains of different rat strains and their possible roles in acute serotonin depletion.
    Chu T, Kumagai Y, DiStefano EW, Cho AK.
    Biochem Pharmacol; 1996 Mar 22; 51(6):789-96. PubMed ID: 8602874
    [Abstract] [Full Text] [Related]

  • 52. Toxic effects of MDMA on central serotonergic neurons in the primate: importance of route and frequency of drug administration.
    Ricaurte GA, DeLanney LE, Irwin I, Langston JW.
    Brain Res; 1988 Apr 12; 446(1):165-8. PubMed ID: 2897228
    [Abstract] [Full Text] [Related]

  • 53. Lack of neurotoxicity after intra-raphe micro-injections of MDMA ("ecstasy").
    Paris JM, Cunningham KA.
    NIDA Res Monogr; 1990 Apr 12; 105():333-4. PubMed ID: 1715034
    [No Abstract] [Full Text] [Related]

  • 54. 5-Hydroxyindoleacetic acid in cerebrospinal fluid reflects serotonergic damage induced by 3,4-methylenedioxymethamphetamine in CNS of non-human primates.
    Ricaurte GA, DeLanney LE, Wiener SG, Irwin I, Langston JW.
    Brain Res; 1988 Dec 06; 474(2):359-63. PubMed ID: 2463059
    [Abstract] [Full Text] [Related]

  • 55. Depression of rat brain tryptophan hydroxylase activity following the acute administration of methylenedioxymethamphetamine.
    Schmidt CJ, Taylor VL.
    Biochem Pharmacol; 1987 Dec 01; 36(23):4095-102. PubMed ID: 2891359
    [Abstract] [Full Text] [Related]

  • 56. L-DOPA potentiation of the serotonergic deficits due to a single administration of 3,4-methylenedioxymethamphetamine, p-chloroamphetamine or methamphetamine to rats.
    Schmidt CJ, Black CK, Taylor VL.
    Eur J Pharmacol; 1991 Oct 02; 203(1):41-9. PubMed ID: 1686766
    [Abstract] [Full Text] [Related]

  • 57. Oral administration of 3,4-methylenedioxymethamphetamine (MDMA) produces selective serotonergic depletion in the nonhuman primate.
    Ali SF, Newport GD, Scallet AC, Binienda Z, Ferguson SA, Bailey JR, Paule MG, Slikker W.
    Neurotoxicol Teratol; 1993 Oct 02; 15(2):91-6. PubMed ID: 7685472
    [Abstract] [Full Text] [Related]

  • 58. Orally administered MDMA causes a long-term depletion of serotonin in rat brain.
    Finnegan KT, Ricaurte GA, Ritchie LD, Irwin I, Peroutka SJ, Langston JW.
    Brain Res; 1988 Apr 26; 447(1):141-4. PubMed ID: 2898273
    [Abstract] [Full Text] [Related]

  • 59. The substituted amphetamines 3,4-methylenedioxymethamphetamine, methamphetamine, p-chloroamphetamine and fenfluramine induce 5-hydroxytryptamine release via a common mechanism blocked by fluoxetine and cocaine.
    Berger UV, Gu XF, Azmitia EC.
    Eur J Pharmacol; 1992 May 14; 215(2-3):153-60. PubMed ID: 1356787
    [Abstract] [Full Text] [Related]

  • 60. Pineal serotonin is resistant to depletion by serotonergic neurotoxins in rats.
    Champney TH, Matthews RT.
    J Pineal Res; 1991 May 14; 11(3-4):163-7. PubMed ID: 1724461
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.