These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Pseudomonas aeruginosa overexpression system of nitric oxide reductase for in vivo and in vitro mutational analyses. Yamagiwa R, Kurahashi T, Takeda M, Adachi M, Nakamura H, Arai H, Shiro Y, Sawai H, Tosha T. Biochim Biophys Acta Bioenerg; 2018 May; 1859(5):333-341. PubMed ID: 29499184 [Abstract] [Full Text] [Related]
5. Effect of Outer-Sphere Side Chain Substitutions on the Fate of the trans Iron-Nitrosyl Dimer in Heme/Nonheme Engineered Myoglobins (Fe(B)Mbs): Insights into the Mechanism of Denitrifying NO Reductases. Matsumura H, Chakraborty S, Reed J, Lu Y, Moënne-Loccoz P. Biochemistry; 2016 Apr 12; 55(14):2091-9. PubMed ID: 27003474 [Abstract] [Full Text] [Related]
7. Can Reduction of NO to N2O in Cytochrome c Dependent Nitric Oxide Reductase Proceed through a Trans-Mechanism? Blomberg MR. Biochemistry; 2017 Jan 10; 56(1):120-131. PubMed ID: 27959492 [Abstract] [Full Text] [Related]
8. Mechanisms for enzymatic reduction of nitric oxide to nitrous oxide - A comparison between nitric oxide reductase and cytochrome c oxidase. Blomberg MRA, Ädelroth P. Biochim Biophys Acta Bioenerg; 2018 Nov 10; 1859(11):1223-1234. PubMed ID: 30248312 [Abstract] [Full Text] [Related]
13. Low-spin heme b(3) in the catalytic center of nitric oxide reductase from Pseudomonas nautica. Timóteo CG, Pereira AS, Martins CE, Naik SG, Duarte AG, Moura JJ, Tavares P, Huynh BH, Moura I. Biochemistry; 2011 May 24; 50(20):4251-62. PubMed ID: 21452843 [Abstract] [Full Text] [Related]
14. Binding of NO and CO to the d(1) Heme of cd(1) nitrite reductase from Pseudomonas aeruginosa. Das TK, Wilson EK, Cutruzzolà F, Brunori M, Rousseau DL. Biochemistry; 2001 Sep 11; 40(36):10774-81. PubMed ID: 11535052 [Abstract] [Full Text] [Related]
15. Structure and function of bacterial nitric oxide reductases: nitric oxide reductase, anaerobic enzymes. Shiro Y. Biochim Biophys Acta; 2012 Oct 11; 1817(10):1907-13. PubMed ID: 22425814 [Abstract] [Full Text] [Related]
16. Electrochemical behaviour of bacterial nitric oxide reductase-evidence of low redox potential non-heme Fe(B) gives new perspectives on the catalytic mechanism. Cordas CM, Duarte AG, Moura JJ, Moura I. Biochim Biophys Acta; 2013 Mar 11; 1827(3):233-8. PubMed ID: 23142527 [Abstract] [Full Text] [Related]
17. Time-resolved resonance Raman and time-resolved step-scan FTIR studies of nitric oxide reductase from Paracoccus denitrificans: comparison of the heme b3-FeB site to that of the heme-CuB in oxidases. Pinakoulaki E, Varotsis C. Biochemistry; 2003 Dec 23; 42(50):14856-61. PubMed ID: 14674760 [Abstract] [Full Text] [Related]
18. Heme/non-heme diiron(II) complexes and O2, CO, and NO adducts as reduced and substrate-bound models for the active site of bacterial nitric oxide reductase. Wasser IM, Huang HW, Moënne-Loccoz P, Karlin KD. J Am Chem Soc; 2005 Mar 16; 127(10):3310-20. PubMed ID: 15755147 [Abstract] [Full Text] [Related]
19. Proton and electron pathways in the bacterial nitric oxide reductase. Hendriks JH, Jasaitis A, Saraste M, Verkhovsky MI. Biochemistry; 2002 Feb 19; 41(7):2331-40. PubMed ID: 11841226 [Abstract] [Full Text] [Related]
20. Structural basis for nitrous oxide generation by bacterial nitric oxide reductases. Shiro Y, Sugimoto H, Tosha T, Nagano S, Hino T. Philos Trans R Soc Lond B Biol Sci; 2012 May 05; 367(1593):1195-203. PubMed ID: 22451105 [Abstract] [Full Text] [Related] Page: [Next] [New Search]