These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
134 related items for PubMed ID: 24347689
1. A Combined Multiple-SLED Broadband Light Source at 1300 nm for High Resolution Optical Coherence Tomography. Wang H, Jenkins MW, Rollins AM. Opt Commun; 2008 Apr 01; 281(7):. PubMed ID: 24347689 [Abstract] [Full Text] [Related]
2. Ultra-high-resolution SD-OCM imaging with a compact polarization-aligned 840 nm broadband combined-SLED source. Haindl R, Duelk M, Gloor S, Dahdah J, Ojeda J, Sturtzel C, Deng S, Joyce Deloria A, Li Q, Liu M, Distel M, Drexler W, Leitgeb R. Biomed Opt Express; 2020 Jun 01; 11(6):3395-3406. PubMed ID: 32637262 [Abstract] [Full Text] [Related]
3. Ultrahigh resolution optical coherence tomography imaging with a broadband superluminescent diode light source. Ko T, Adler D, Fujimoto J, Mamedov D, Prokhorov V, Shidlovski V, Yakubovich S. Opt Express; 2004 May 17; 12(10):2112-9. PubMed ID: 19475046 [Abstract] [Full Text] [Related]
4. 2.2 microm axial resolution optical coherence tomography based on a 400 nm-bandwidth superluminescent diode. Chan MC, Su YS, Lin CF, Sun CK. Scanning; 2006 May 17; 28(1):11-4. PubMed ID: 16502620 [Abstract] [Full Text] [Related]
5. Fiber-based photoacoustic remote sensing microscopy and spectral-domain optical coherence tomography with a dual-function 1050-nm interrogation source. Martell M, Haven NJ, Zemp R. J Biomed Opt; 2021 Jun 17; 26(6):. PubMed ID: 34164968 [Abstract] [Full Text] [Related]
6. Ultrahigh-resolution optical coherence tomography with a diode-pumped broadband Cr(3+):LiCAF laser. Wagenblast P, Ko T, Fujimoto J, Kaertner F, Morgner U. Opt Express; 2004 Jul 12; 12(14):3257-63. PubMed ID: 19483850 [Abstract] [Full Text] [Related]
7. Ultrahigh-resolution optical coherence tomography at 1.15 mum using photonic crystal fiber with no zero-dispersion wavelengths. Wang H, Fleming CP, Rollins AM. Opt Express; 2007 Mar 19; 15(6):3085-92. PubMed ID: 19532547 [Abstract] [Full Text] [Related]
8. Broadband Quantum Dot Superluminescent Diode with Simultaneous Three-State Emission. Jiang C, Wang H, Chen H, Dai H, Zhang Z, Li X, Yao Z. Nanomaterials (Basel); 2022 Apr 22; 12(9):. PubMed ID: 35564140 [Abstract] [Full Text] [Related]
9. Ultrahigh resolution optical coherence tomography using a superluminescent light source. Kowalevicz A, Ko T, Hartl I, Fujimoto J, Pollnau M, Salathé R. Opt Express; 2002 Apr 08; 10(7):349-53. PubMed ID: 19436366 [Abstract] [Full Text] [Related]
10. Imaging ex vivo and in vitro brain morphology in animal models with ultrahigh resolution optical coherence tomography. Bizheva K, Unterhuber A, Hermann B, Povazay B, Sattmann H, Drexler W, Stingl A, Le T, Mei M, Holzwarth R, Reitsamer HA, Morgan JE, Cowey A. J Biomed Opt; 2004 Apr 08; 9(4):719-24. PubMed ID: 15250758 [Abstract] [Full Text] [Related]
11. 102-nm, 44.5-MHz inertial-free swept source by mode-locked fiber laser and time stretch technique for optical coherence tomography. Kang J, Feng P, Wei X, Lam EY, Tsia KK, Wong KKY. Opt Express; 2018 Feb 19; 26(4):4370-4381. PubMed ID: 29475287 [Abstract] [Full Text] [Related]
12. Effect of target biological tissue and choice of light source on penetration depth and resolution in optical coherence tomography. Sainter AW, King TA, Dickinson MR. J Biomed Opt; 2004 Feb 19; 9(1):193-9. PubMed ID: 14715073 [Abstract] [Full Text] [Related]
13. Structural and functional human retinal imaging with a fiber-based visible light OCT ophthalmoscope. Chong SP, Bernucci M, Radhakrishnan H, Srinivasan VJ. Biomed Opt Express; 2017 Jan 01; 8(1):323-337. PubMed ID: 28101421 [Abstract] [Full Text] [Related]
14. Broadband superluminescent diode-based ultrahigh resolution optical coherence tomography for ophthalmic imaging. Zhu D, Shen M, Jiang H, Li M, Wang MR, Wang Y, Ge L, Qu J, Wang J. J Biomed Opt; 2011 Dec 01; 16(12):126006. PubMed ID: 22191923 [Abstract] [Full Text] [Related]
15. Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm. Nishizawa N, Chen Y, Hsiung P, Ippen EP, Fujimoto JG. Opt Lett; 2004 Dec 15; 29(24):2846-8. PubMed ID: 15645800 [Abstract] [Full Text] [Related]
17. Noninvasive volumetric imaging and morphometry of the rodent retina with high-speed, ultrahigh-resolution optical coherence tomography. Srinivasan VJ, Ko TH, Wojtkowski M, Carvalho M, Clermont A, Bursell SE, Song QH, Lem J, Duker JS, Schuman JS, Fujimoto JG. Invest Ophthalmol Vis Sci; 2006 Dec 15; 47(12):5522-8. PubMed ID: 17122144 [Abstract] [Full Text] [Related]
18. Enhanced visualization of choroidal vessels using ultrahigh resolution ophthalmic OCT at 1050 nm. Povazay B, Bizheva K, Hermann B, Unterhuber A, Sattmann H, Fercher A, Drexler W, Schubert C, Ahnelt P, Mei M, Holzwarth R, Wadsworth W, Knight J, Russell PS. Opt Express; 2003 Aug 25; 11(17):1980-6. PubMed ID: 19466083 [Abstract] [Full Text] [Related]
19. In vivo optical coherence tomography imaging of human skin: norm and pathology. Gladkova ND, Petrova GA, Nikulin NK, Radenska-Lopovok SG, Snopova LB, Chumakov YP, Nasonova VA, Gelikonov VM, Gelikonov GV, Kuranov RV, Sergeev AM, Feldchtein FI. Skin Res Technol; 2000 Feb 25; 6(1):6-16. PubMed ID: 11428936 [Abstract] [Full Text] [Related]