These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


129 related items for PubMed ID: 2435616

  • 1. The mode of action of some antibiotics on red blood cell membranes.
    Blaskó K, Shagina LV, Györgyi S, Lev AA.
    Gen Physiol Biophys; 1986 Dec; 5(6):625-36. PubMed ID: 2435616
    [Abstract] [Full Text] [Related]

  • 2. Comparative studies on primycin and gramicidin induced cation transport changes in human erythrocytes.
    Blaskó K, Schagina LV, Malev VV, Sugár IP, Györgyi S.
    Acta Biochim Biophys Acad Sci Hung; 1984 Dec; 19(3-4):289-98. PubMed ID: 6085854
    [Abstract] [Full Text] [Related]

  • 3. [Relation between gramicidin D and valinomycin-induced conductivity of lipid bilayer and cholesterol levels].
    Hianik T, Bajchi A, Laputkova G, Pavelkova J.
    Biofizika; 1987 Dec; 32(3):458-61. PubMed ID: 2441765
    [Abstract] [Full Text] [Related]

  • 4. Dynamic properties and membrane activity of ion specific antibiotics.
    Grell E, Funck T.
    J Supramol Struct; 1973 Dec; 1(4):307-35. PubMed ID: 4129080
    [No Abstract] [Full Text] [Related]

  • 5. Formation of flip sites for phospholipids by introduction of channel-forming antibiotics into the membrane of human erythrocytes.
    Haest CW, Classen J.
    Biomed Biochim Acta; 1987 Dec; 46(2-3):S16-20. PubMed ID: 2439073
    [Abstract] [Full Text] [Related]

  • 6. Alkali ion transport of primycin modified erythrocytes.
    Blaskó K, Györgyi S.
    Acta Biol Med Ger; 1981 Dec; 40(4-5):465-9. PubMed ID: 7315092
    [Abstract] [Full Text] [Related]

  • 7. Cholesterol-dependent gramicidin A channel inactivation in red blood cell membranes and lipid bilayer membranes.
    Schagina LV, Blaskó K, Grinfeldt AE, Korchev YE, Lev AA.
    Biochim Biophys Acta; 1989 Jan 16; 978(1):145-50. PubMed ID: 2464373
    [Abstract] [Full Text] [Related]

  • 8. Cooperative binding of primycin and gramicidin on erythrocyte membranes. A cation transport study.
    Suga'r IP, Blaskó K, Györgyi S, Shcagina LV, Malev VV, Lev AA.
    Membr Biochem; 1989 Jan 16; 8(1):1-10. PubMed ID: 2478862
    [Abstract] [Full Text] [Related]

  • 9. Electrodiffusion, barrier, and gating analysis of DIDS-insensitive chloride conductance in human red blood cells treated with valinomycin or gramicidin.
    Freedman JC, Novak TS.
    J Gen Physiol; 1997 Feb 16; 109(2):201-16. PubMed ID: 9041449
    [Abstract] [Full Text] [Related]

  • 10. [Mechanosensitivity of gramicidin A channels in semispherical bilayer membranes at constant tension].
    Markin VS, Shlenskiĭ VG, Saimon SA, Benos DD, Ismailov II.
    Biofizika; 2006 Feb 16; 51(6):1014-8. PubMed ID: 17175912
    [Abstract] [Full Text] [Related]

  • 11. Effects of channel-forming antibiotics on the membrane of skeletal muscle fibre.
    Caffier G, Shvinka NE.
    Biomed Biochim Acta; 1989 Feb 16; 48(5-6):S552-7. PubMed ID: 2474291
    [Abstract] [Full Text] [Related]

  • 12. Effect of streptavidins with varying biotin binding affinities on the properties of biotinylated gramicidin channels.
    Antonenko YN, Rokitskaya TI, Kotova EA, Reznik GO, Sano T, Cantor CR.
    Biochemistry; 2004 Apr 20; 43(15):4575-82. PubMed ID: 15078104
    [Abstract] [Full Text] [Related]

  • 13. Current-voltage studies on the thylakoid membrane in the presence of ionophores.
    Schmid R, Junge W.
    Biochim Biophys Acta; 1975 Jun 11; 394(1):76-92. PubMed ID: 49197
    [Abstract] [Full Text] [Related]

  • 14. Gramicidin D conformation, dynamics and membrane ion transport.
    Burkhart BM, Gassman RM, Langs DA, Pangborn WA, Duax WL, Pletnev V.
    Biopolymers; 1999 Jun 11; 51(2):129-44. PubMed ID: 10397797
    [Abstract] [Full Text] [Related]

  • 15. Isothermal titration calorimetry studies of the binding of the antimicrobial peptide gramicidin S to phospholipid bilayer membranes.
    Abraham T, Lewis RN, Hodges RS, McElhaney RN.
    Biochemistry; 2005 Aug 23; 44(33):11279-85. PubMed ID: 16101312
    [Abstract] [Full Text] [Related]

  • 16. Large unselective pore in lipid bilayer membrane formed by positively charged peptides containing a sequence of gramicidin A.
    Antonenko YN, Stoilova TB, Kovalchuk SI, Egorova NS, Pashkovskaya AA, Sobko AA, Kotova EA, Sychev SV, Surovoy AY.
    FEBS Lett; 2005 Sep 26; 579(23):5247-52. PubMed ID: 16165129
    [Abstract] [Full Text] [Related]

  • 17. Membrane permeabilization of a mammalian neuroendocrine cell type (PC12) by the channel-forming peptides zervamicin, alamethicin, and gramicidin.
    Weidema AF, Kropacheva TN, Raap J, Ypey DL.
    Chem Biodivers; 2007 Jun 26; 4(6):1347-59. PubMed ID: 17589868
    [Abstract] [Full Text] [Related]

  • 18. Properties of gramicidin A channels in erythrocyte membranes.
    Blaskó K, Schagina LV, Györgyi S, Rontó G.
    Biochimie; 1989 Jan 26; 71(1):99-104. PubMed ID: 2470422
    [Abstract] [Full Text] [Related]

  • 19. Structure and dynamic properties of ion-specific antibiotics.
    Grell E, Funck T, Eggers F.
    Membranes; 1975 Jan 26; 3():1-126. PubMed ID: 53774
    [No Abstract] [Full Text] [Related]

  • 20. Artificial cell based on lipid hollow polyelectrolyte microcapsules: channel reconstruction and membrane potential measurement.
    Tiourina OP, Radtchenko I, Sukhorukov GB, Möhwald H.
    J Membr Biol; 2002 Nov 01; 190(1):9-16. PubMed ID: 12422268
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.