These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


658 related items for PubMed ID: 24356470

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
    Xu Y, Lin Z, Huang X, Liu Y, Huang Y, Duan X.
    ACS Nano; 2013 May 28; 7(5):4042-9. PubMed ID: 23550832
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Flexible Black-Phosphorus Nanoflake/Carbon Nanotube Composite Paper for High-Performance All-Solid-State Supercapacitors.
    Yang B, Hao C, Wen F, Wang B, Mu C, Xiang J, Li L, Xu B, Zhao Z, Liu Z, Tian Y.
    ACS Appl Mater Interfaces; 2017 Dec 27; 9(51):44478-44484. PubMed ID: 29192760
    [Abstract] [Full Text] [Related]

  • 7. Fabrication and Electrochemical Performance of PVA/CNT/PANI Flexible Films as Electrodes for Supercapacitors.
    Ben J, Song Z, Liu X, Lü W, Li X.
    Nanoscale Res Lett; 2020 Jul 22; 15(1):151. PubMed ID: 32699960
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. In Situ Growth of a High-Performance All-Solid-State Electrode for Flexible Supercapacitors Based on a PANI/CNT/EVA Composite.
    Guan X, Kong D, Huang Q, Cao L, Zhang P, Lin H, Lin Z, Yuan H.
    Polymers (Basel); 2019 Jan 21; 11(1):. PubMed ID: 30960162
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Carboxymethylcellulose-polyaniline/carbon nanotube (CMC-PANI/CNT) film as flexible and highly electrochemical active electrode for supercapacitors.
    Xu H, Cui L, Pan X, An Y, Jin X.
    Int J Biol Macromol; 2022 Oct 31; 219():1135-1145. PubMed ID: 36049565
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Rational Design and in-situ Synthesis of Ultra-Thin β-Ni(OH)2 Nanoplates for High Performance All-Solid-State Flexible Supercapacitors.
    Wang S, Tan C, Fei L, Huang H, Zhang S, Huang H, Zhang X, Huang QA, Hu Y, Gu H.
    Front Chem; 2020 Oct 31; 8():602322. PubMed ID: 33330396
    [Abstract] [Full Text] [Related]

  • 15. Graphene-based supercapacitor with carbon nanotube film as highly efficient current collector.
    Notarianni M, Liu J, Mirri F, Pasquali M, Motta N.
    Nanotechnology; 2014 Oct 31; 25(43):435405. PubMed ID: 25301789
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Hierarchical 3D All-Carbon Composite Structure Modified with N-Doped Graphene Quantum Dots for High-Performance Flexible Supercapacitors.
    Li Z, Liu X, Wang L, Bu F, Wei J, Pan D, Wu M.
    Small; 2018 Sep 31; 14(39):e1801498. PubMed ID: 30151984
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 33.