These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Structural differences among alkali-soluble arabinoxylans from maize (Zea mays), rice (Oryza sativa), and wheat (Triticum aestivum) brans influence human fecal fermentation profiles. Rose DJ, Patterson JA, Hamaker BR. J Agric Food Chem; 2010 Jan 13; 58(1):493-9. PubMed ID: 20000566 [Abstract] [Full Text] [Related]
3. Two-stage hydrothermal processing of wheat (Triticum aestivum) bran for the production of feruloylated Arabinoxylooligosaccharides. Rose DJ, Inglett GE. J Agric Food Chem; 2010 May 26; 58(10):6427-32. PubMed ID: 20408584 [Abstract] [Full Text] [Related]
4. Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in vitro colon model. Nordlund E, Aura AM, Mattila I, Kössö T, Rouau X, Poutanen K. J Agric Food Chem; 2012 Aug 22; 60(33):8134-45. PubMed ID: 22731123 [Abstract] [Full Text] [Related]
8. Improving the digestibility of cereal fractions of wheat, maize, and rice by a carbohydrase complex rich in xylanases and arabinofuranosidases: an in vitro digestion study. Vangsøe CT, Bonnin E, Joseph-Aime M, Saulnier L, Neugnot-Roux V, Bach Knudsen KE. J Sci Food Agric; 2021 Mar 30; 101(5):1910-1919. PubMed ID: 32895949 [Abstract] [Full Text] [Related]
10. Changes in dietary fiber fractions and gut microbial fermentation properties of wheat bran after extrusion and bread making. Arcila JA, Weier SA, Rose DJ. Food Res Int; 2015 Aug 30; 74():217-223. PubMed ID: 28411986 [Abstract] [Full Text] [Related]
12. Production of xylooligosaccharide from wheat bran by microwave assisted enzymatic hydrolysis. Wang TH, Lu S. Food Chem; 2013 Jun 01; 138(2-3):1531-5. PubMed ID: 23411277 [Abstract] [Full Text] [Related]
14. In Vitro Fermentation Patterns of Rice Bran Components by Human Gut Microbiota. Pham T, Teoh KT, Savary BJ, Chen MH, McClung A, Lee SO. Nutrients; 2017 Nov 12; 9(11):. PubMed ID: 29137150 [Abstract] [Full Text] [Related]
15. Particle size and fraction of wheat bran influence short-chain fatty acid production in vitro. Stewart ML, Slavin JL. Br J Nutr; 2009 Nov 12; 102(10):1404-7. PubMed ID: 19664297 [Abstract] [Full Text] [Related]
16. Maize and resistant starch enriched breads reduce postprandial glycemic responses in rats. Brites CM, Trigo MJ, Carrapiço B, Alviña M, Bessa RJ. Nutr Res; 2011 Apr 12; 31(4):302-8. PubMed ID: 21530804 [Abstract] [Full Text] [Related]
19. In vitro fermentation of arabinoxylan oligosaccharides and low molecular mass arabinoxylans with different structural properties from wheat (Triticum aestivum L.) bran and psyllium (Plantago ovata Forsk) seed husk. Pollet A, Van Craeyveld V, Van de Wiele T, Verstraete W, Delcour JA, Courtin CM. J Agric Food Chem; 2012 Feb 01; 60(4):946-54. PubMed ID: 22224418 [Abstract] [Full Text] [Related]
20. Modification of wheat bran particle size and tissue composition affects colonisation and metabolism by human faecal microbiota. De Paepe K, Verspreet J, Rezaei MN, Martinez SH, Meysman F, Van de Walle D, Dewettinck K, Courtin CM, Van de Wiele T. Food Funct; 2019 Jan 22; 10(1):379-396. PubMed ID: 30604790 [Abstract] [Full Text] [Related] Page: [Next] [New Search]