These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


190 related items for PubMed ID: 24359745

  • 1. Transmembrane protein (perfringolysin o) association with ordered membrane domains (rafts) depends upon the raft-associating properties of protein-bound sterol.
    Lin Q, London E.
    Biophys J; 2013 Dec 17; 105(12):2733-42. PubMed ID: 24359745
    [Abstract] [Full Text] [Related]

  • 2. Perfringolysin O association with ordered lipid domains: implications for transmembrane protein raft affinity.
    Nelson LD, Chiantia S, London E.
    Biophys J; 2010 Nov 17; 99(10):3255-63. PubMed ID: 21081073
    [Abstract] [Full Text] [Related]

  • 3. How interaction of perfringolysin O with membranes is controlled by sterol structure, lipid structure, and physiological low pH: insights into the origin of perfringolysin O-lipid raft interaction.
    Nelson LD, Johnson AE, London E.
    J Biol Chem; 2008 Feb 22; 283(8):4632-42. PubMed ID: 18089559
    [Abstract] [Full Text] [Related]

  • 4. Altering hydrophobic sequence lengths shows that hydrophobic mismatch controls affinity for ordered lipid domains (rafts) in the multitransmembrane strand protein perfringolysin O.
    Lin Q, London E.
    J Biol Chem; 2013 Jan 11; 288(2):1340-52. PubMed ID: 23150664
    [Abstract] [Full Text] [Related]

  • 5. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function.
    Megha, London E.
    J Biol Chem; 2004 Mar 12; 279(11):9997-10004. PubMed ID: 14699154
    [Abstract] [Full Text] [Related]

  • 6. Cholesterol precursors stabilize ordinary and ceramide-rich ordered lipid domains (lipid rafts) to different degrees. Implications for the Bloch hypothesis and sterol biosynthesis disorders.
    Megha, Bakht O, London E.
    J Biol Chem; 2006 Aug 04; 281(31):21903-21913. PubMed ID: 16735517
    [Abstract] [Full Text] [Related]

  • 7. Cholesterol exposure at the membrane surface is necessary and sufficient to trigger perfringolysin O binding.
    Flanagan JJ, Tweten RK, Johnson AE, Heuck AP.
    Biochemistry; 2009 May 12; 48(18):3977-87. PubMed ID: 19292457
    [Abstract] [Full Text] [Related]

  • 8. The C-terminal domain of perfringolysin O is an essential cholesterol-binding unit targeting to cholesterol-rich microdomains.
    Shimada Y, Maruya M, Iwashita S, Ohno-Iwashita Y.
    Eur J Biochem; 2002 Dec 12; 269(24):6195-203. PubMed ID: 12473115
    [Abstract] [Full Text] [Related]

  • 9. The influence of natural lipid asymmetry upon the conformation of a membrane-inserted protein (perfringolysin O).
    Lin Q, London E.
    J Biol Chem; 2014 Feb 28; 289(9):5467-78. PubMed ID: 24398685
    [Abstract] [Full Text] [Related]

  • 10. Effect of sterol structure on ordered membrane domain (raft) stability in symmetric and asymmetric vesicles.
    St Clair JW, London E.
    Biochim Biophys Acta Biomembr; 2019 Jun 01; 1861(6):1112-1122. PubMed ID: 30904407
    [Abstract] [Full Text] [Related]

  • 11. Permeabilization of raft-containing lipid vesicles by delta-lysin: a mechanism for cell sensitivity to cytotoxic peptides.
    Pokorny A, Almeida PF.
    Biochemistry; 2005 Jul 12; 44(27):9538-44. PubMed ID: 15996108
    [Abstract] [Full Text] [Related]

  • 12. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
    Crane JM, Tamm LK.
    Biophys J; 2004 May 12; 86(5):2965-79. PubMed ID: 15111412
    [Abstract] [Full Text] [Related]

  • 13. Effect of the structure of lipids favoring disordered domain formation on the stability of cholesterol-containing ordered domains (lipid rafts): identification of multiple raft-stabilization mechanisms.
    Bakht O, Pathak P, London E.
    Biophys J; 2007 Dec 15; 93(12):4307-18. PubMed ID: 17766350
    [Abstract] [Full Text] [Related]

  • 14. Decreasing Transmembrane Segment Length Greatly Decreases Perfringolysin O Pore Size.
    Lin Q, Wang T, Li H, London E.
    J Membr Biol; 2015 Jun 15; 248(3):517-27. PubMed ID: 25850715
    [Abstract] [Full Text] [Related]

  • 15. Selective binding of perfringolysin O derivative to cholesterol-rich membrane microdomains (rafts).
    Waheed AA, Shimada Y, Heijnen HF, Nakamura M, Inomata M, Hayashi M, Iwashita S, Slot JW, Ohno-Iwashita Y.
    Proc Natl Acad Sci U S A; 2001 Apr 24; 98(9):4926-31. PubMed ID: 11309501
    [Abstract] [Full Text] [Related]

  • 16. Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): implications for lipid raft structure and function.
    Wang J, Megha, London E.
    Biochemistry; 2004 Feb 03; 43(4):1010-8. PubMed ID: 14744146
    [Abstract] [Full Text] [Related]

  • 17. Sterol carrier protein-2 selectively alters lipid composition and cholesterol dynamics of caveolae/lipid raft vs nonraft domains in L-cell fibroblast plasma membranes.
    Atshaves BP, Gallegos AM, McIntosh AL, Kier AB, Schroeder F.
    Biochemistry; 2003 Dec 16; 42(49):14583-98. PubMed ID: 14661971
    [Abstract] [Full Text] [Related]

  • 18. Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts).
    Megha, Sawatzki P, Kolter T, Bittman R, London E.
    Biochim Biophys Acta; 2007 Sep 16; 1768(9):2205-12. PubMed ID: 17574203
    [Abstract] [Full Text] [Related]

  • 19. Structure and cholesterol domain dynamics of an enriched caveolae/raft isolate.
    Gallegos AM, McIntosh AL, Atshaves BP, Schroeder F.
    Biochem J; 2004 Sep 01; 382(Pt 2):451-61. PubMed ID: 15149285
    [Abstract] [Full Text] [Related]

  • 20. Detection of cholesterol-rich microdomains in the inner leaflet of the plasma membrane.
    Hayashi M, Shimada Y, Inomata M, Ohno-Iwashita Y.
    Biochem Biophys Res Commun; 2006 Dec 22; 351(3):713-8. PubMed ID: 17083918
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.