These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


207 related items for PubMed ID: 24362044

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Studies of intestinal permeability of 36 flavonoids using Caco-2 cell monolayer model.
    Tian XJ, Yang XW, Yang X, Wang K.
    Int J Pharm; 2009 Feb 09; 367(1-2):58-64. PubMed ID: 18848870
    [Abstract] [Full Text] [Related]

  • 3. Comparison of brain capillary endothelial cell-based and epithelial (MDCK-MDR1, Caco-2, and VB-Caco-2) cell-based surrogate blood-brain barrier penetration models.
    Hellinger E, Veszelka S, Tóth AE, Walter F, Kittel A, Bakk ML, Tihanyi K, Háda V, Nakagawa S, Duy TD, Niwa M, Deli MA, Vastag M.
    Eur J Pharm Biopharm; 2012 Oct 09; 82(2):340-51. PubMed ID: 22906709
    [Abstract] [Full Text] [Related]

  • 4. Development and validation of a LC-MS/MS method for assessment of an anti-inflammatory indolinone derivative by in vitro blood-brain barrier models.
    Jähne EA, Eigenmann DE, Culot M, Cecchelli R, Walter FR, Deli MA, Tremmel R, Fricker G, Smiesko M, Hamburger M, Oufir M.
    J Pharm Biomed Anal; 2014 Sep 09; 98():235-46. PubMed ID: 24949819
    [Abstract] [Full Text] [Related]

  • 5. An in vitro transport model for rapid screening and predicting the permeability of candidate compounds at blood-brain barrier.
    Yang ZH, Sun X, Mei C, Sun XB, Liu XD, Chang Q.
    J Asian Nat Prod Res; 2011 Dec 09; 13(12):1087-97. PubMed ID: 22115032
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Influence of P-glycoprotein on brucine transport at the in vitro blood-brain barrier.
    Xu DH, Yan M, Li HD, Fang PF, Liu YW.
    Eur J Pharmacol; 2012 Sep 05; 690(1-3):68-76. PubMed ID: 22749978
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Penetration of verapamil across blood brain barrier following cerebral ischemia depending on both paracellular pathway and P-glycoprotein transportation.
    Fang W, Lv P, Geng X, Shang E, Yang Q, Sha L, Li Y.
    Neurochem Int; 2013 Jan 05; 62(1):23-30. PubMed ID: 23142723
    [Abstract] [Full Text] [Related]

  • 10. A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes.
    Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M.
    Neurochem Int; 2009 Jan 05; 54(3-4):253-63. PubMed ID: 19111869
    [Abstract] [Full Text] [Related]

  • 11. Re-evaluation of the role of P-glycoprotein in in vitro drug permeability studies with the bovine brain microvessel endothelial cells.
    Hakkarainen JJ, Rilla K, Suhonen M, Ruponen M, Forsberg MM.
    Xenobiotica; 2014 Mar 05; 44(3):283-94. PubMed ID: 23924297
    [Abstract] [Full Text] [Related]

  • 12. Chemical modification of paclitaxel (Taxol) reduces P-glycoprotein interactions and increases permeation across the blood-brain barrier in vitro and in situ.
    Rice A, Liu Y, Michaelis ML, Himes RH, Georg GI, Audus KL.
    J Med Chem; 2005 Feb 10; 48(3):832-8. PubMed ID: 15689167
    [Abstract] [Full Text] [Related]

  • 13. Blood-brain barrier in vitro models as tools in drug discovery: assessment of the transport ranking of antihistaminic drugs.
    Neuhaus W, Mandikova J, Pawlowitsch R, Linz B, Bennani-Baiti B, Lauer R, Lachmann B, Noe CR.
    Pharmazie; 2012 May 10; 67(5):432-9. PubMed ID: 22764578
    [Abstract] [Full Text] [Related]

  • 14. Baicalin reduces the permeability of the blood-brain barrier during hypoxia in vitro by increasing the expression of tight junction proteins in brain microvascular endothelial cells.
    Zhu H, Wang Z, Xing Y, Gao Y, Ma T, Lou L, Lou J, Gao Y, Wang S, Wang Y.
    J Ethnopharmacol; 2012 Jun 01; 141(2):714-20. PubMed ID: 21920425
    [Abstract] [Full Text] [Related]

  • 15. Intestinal absorption of hawthorn flavonoids--in vitro, in situ and in vivo correlations.
    Zuo Z, Zhang L, Zhou L, Chang Q, Chow M.
    Life Sci; 2006 Nov 25; 79(26):2455-62. PubMed ID: 16989871
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Elucidation of the transport mechanism of baicalin and the influence of a Radix Angelicae Dahuricae extract on the absorption of baicalin in a Caco-2 cell monolayer model.
    Zhu ML, Liang XL, Zhao LJ, Liao ZG, Zhao GW, Cao YC, Zhang J, Luo Y.
    J Ethnopharmacol; 2013 Nov 25; 150(2):553-9. PubMed ID: 24076259
    [Abstract] [Full Text] [Related]

  • 18. [Drug delivery systems of baicalin, baicalin-phospholipid complex and self-microemulsifying drug across Caco-2 cell model].
    Chen L, Long XY, Huang SH, Wu HY, Pan SJ.
    Zhong Yao Cai; 2012 May 25; 35(5):757-61. PubMed ID: 23213740
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Flavonoid metabolites transport across a human BBB model.
    Faria A, Meireles M, Fernandes I, Santos-Buelga C, Gonzalez-Manzano S, Dueñas M, de Freitas V, Mateus N, Calhau C.
    Food Chem; 2014 Apr 15; 149():190-6. PubMed ID: 24295694
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.