These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


219 related items for PubMed ID: 24364354

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Engineering monoterpene production in yeast using a synthetic dominant negative geranyl diphosphate synthase.
    Ignea C, Pontini M, Maffei ME, Makris AM, Kampranis SC.
    ACS Synth Biol; 2014 May 16; 3(5):298-306. PubMed ID: 24847684
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Engineering chimeric diterpene synthases and isoprenoid biosynthetic pathways enables high-level production of miltiradiene in yeast.
    Hu T, Zhou J, Tong Y, Su P, Li X, Liu Y, Liu N, Wu X, Zhang Y, Wang J, Gao L, Tu L, Lu Y, Jiang Z, Zhou YJ, Gao W, Huang L.
    Metab Eng; 2020 Jul 16; 60():87-96. PubMed ID: 32268192
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Heterologous production of labdane-type diterpenes in the green alga Chlamydomonas reinhardtii.
    Papaefthimiou D, Diretto G, Demurtas OC, Mini P, Ferrante P, Giuliano G, Kanellis AK.
    Phytochemistry; 2019 Nov 16; 167():112082. PubMed ID: 31421542
    [Abstract] [Full Text] [Related]

  • 11. Engineering yeast for high-level production of diterpenoid sclareol.
    Cao X, Yu W, Chen Y, Yang S, Zhao ZK, Nielsen J, Luan H, Zhou YJ.
    Metab Eng; 2023 Jan 16; 75():19-28. PubMed ID: 36371032
    [Abstract] [Full Text] [Related]

  • 12. A diterpene synthase from the clary sage Salvia sclarea catalyzes the cyclization of geranylgeranyl diphosphate to (8R)-hydroxy-copalyl diphosphate.
    Günnewich N, Higashi Y, Feng X, Choi KB, Schmidt J, Kutchan TM.
    Phytochemistry; 2013 Jul 16; 91():93-9. PubMed ID: 22959531
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Plant diterpene synthases: exploring modularity and metabolic diversity for bioengineering.
    Zerbe P, Bohlmann J.
    Trends Biotechnol; 2015 Jul 16; 33(7):419-28. PubMed ID: 26003209
    [Abstract] [Full Text] [Related]

  • 15. Modular pathway engineering of diterpenoid synthases and the mevalonic acid pathway for miltiradiene production.
    Zhou YJ, Gao W, Rong Q, Jin G, Chu H, Liu W, Yang W, Zhu Z, Li G, Zhu G, Huang L, Zhao ZK.
    J Am Chem Soc; 2012 Feb 15; 134(6):3234-41. PubMed ID: 22280121
    [Abstract] [Full Text] [Related]

  • 16. Characterization of two genes for the biosynthesis of abietane-type diterpenes in rosemary (Rosmarinus officinalis) glandular trichomes.
    Brückner K, Božić D, Manzano D, Papaefthimiou D, Pateraki I, Scheler U, Ferrer A, de Vos RC, Kanellis AK, Tissier A.
    Phytochemistry; 2014 May 15; 101():52-64. PubMed ID: 24569175
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Reprogramming the Metabolism of Yeast for High-Level Production of Miltiradiene.
    Bai X, Wang S, Zhang Q, Hu Y, Zhou J, Men L, Li D, Ma J, Wei Q, Xu M, Yin X, Hu T.
    J Agric Food Chem; 2024 Apr 17; 72(15):8704-8714. PubMed ID: 38572931
    [Abstract] [Full Text] [Related]

  • 19. Metabolic engineering of Saccharomyces cerevisiae for linalool production.
    Amiri P, Shahpiri A, Asadollahi MA, Momenbeik F, Partow S.
    Biotechnol Lett; 2016 Mar 17; 38(3):503-8. PubMed ID: 26614300
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.