These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 24366364

  • 1. Photosynthetic responses of Monarch birch seedlings to differing timings of free air ozone fumigation.
    Watanabe M, Hoshika Y, Koike T.
    J Plant Res; 2014 Mar; 127(2):339-45. PubMed ID: 24366364
    [Abstract] [Full Text] [Related]

  • 2. Leaf traits and photosynthetic responses of Betula pendula saplings to a range of ground-level ozone concentrations at a range of nitrogen loads.
    Harmens H, Hayes F, Sharps K, Mills G, Calatayud V.
    J Plant Physiol; 2017 Apr; 211():42-52. PubMed ID: 28152417
    [Abstract] [Full Text] [Related]

  • 3. Physiological responses of birch (Betula pendula) to ozone: a comparison between open-soil-grown trees exposed for six growing seasons and potted seedlings exposed for one season.
    Oksanen E.
    Tree Physiol; 2003 Jun; 23(9):603-14. PubMed ID: 12750053
    [Abstract] [Full Text] [Related]

  • 4. Early and late adjustments of the photosynthetic traits and stomatal density in Quercus ilex L. grown in an ozone-enriched environment.
    Fusaro L, Gerosa G, Salvatori E, Marzuoli R, Monga R, Kuzminsky E, Angelaccio C, Quarato D, Fares S.
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():13-21. PubMed ID: 26307426
    [Abstract] [Full Text] [Related]

  • 5. Photosynthetic response of early and late leaves of white birch (Betula platyphylla var. japonica) grown under free-air ozone exposure.
    Hoshika Y, Watanabe M, Inada N, Mao Q, Koike T.
    Environ Pollut; 2013 Nov; 182():242-7. PubMed ID: 23938447
    [Abstract] [Full Text] [Related]

  • 6. Photosynthetic responses to ozone of upper and lower canopy leaves of Fagus crenata Blume seedlings grown under different soil nutrient conditions.
    Kinose Y, Fukamachi Y, Okabe S, Hiroshima H, Watanabe M, Izuta T.
    Environ Pollut; 2017 Apr; 223():213-222. PubMed ID: 28162800
    [Abstract] [Full Text] [Related]

  • 7. Ozone-induced stomatal sluggishness changes stomatal parameters of Jarvis-type model in white birch and deciduous oak.
    Hoshika Y, Watanabe M, Carrari E, Paoletti E, Koike T.
    Plant Biol (Stuttg); 2018 Jan; 20(1):20-28. PubMed ID: 28941031
    [Abstract] [Full Text] [Related]

  • 8. Leaf and canopy conductance in aspen and aspen-birch forests under free-air enrichment of carbon dioxide and ozone.
    Uddling J, Teclaw RM, Pregitzer KS, Ellsworth DS.
    Tree Physiol; 2009 Nov; 29(11):1367-80. PubMed ID: 19773339
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Elevated ozone reduces photosynthetic carbon gain by accelerating leaf senescence of inbred and hybrid maize in a genotype-specific manner.
    Yendrek CR, Erice G, Montes CM, Tomaz T, Sorgini CA, Brown PJ, McIntyre LM, Leakey ADB, Ainsworth EA.
    Plant Cell Environ; 2017 Dec; 40(12):3088-3100. PubMed ID: 29044553
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. How sensitive is Melissa officinalis to realistic ozone concentrations?
    Döring AS, Pellegrini E, Campanella A, Trivellini A, Gennai C, Petersen M, Nali C, Lorenzini G.
    Plant Physiol Biochem; 2014 Jan; 74():156-64. PubMed ID: 24321873
    [Abstract] [Full Text] [Related]

  • 14. Diel trends in stomatal response to ozone and water deficit: a unique relationship of midday values to growth and allometry in Pima cotton?
    Grantz DA, Paudel R, Vu HB, Shrestha A, Grulke N.
    Plant Biol (Stuttg); 2016 Jan; 18 Suppl 1():37-46. PubMed ID: 26031549
    [Abstract] [Full Text] [Related]

  • 15. Localized ozone fumigation system for studying ozone effects on photosynthesis, respiration, electron transport rate and isoprene emission in field-grown Mediterranean oak species.
    Velikova V, Tsonev T, Pinelli P, Alessio GA, Loreto F.
    Tree Physiol; 2005 Dec; 25(12):1523-32. PubMed ID: 16137938
    [Abstract] [Full Text] [Related]

  • 16. Mesophyll conductance to CO2 in leaves of Siebold's beech (Fagus crenata) seedlings under elevated ozone.
    Watanabe M, Kamimaki Y, Mori M, Okabe S, Arakawa I, Kinose Y, Nakaba S, Izuta T.
    J Plant Res; 2018 Nov; 131(6):907-914. PubMed ID: 30203164
    [Abstract] [Full Text] [Related]

  • 17. Model-based analysis of avoidance of ozone stress by stomatal closure in Siebold's beech (Fagus crenata).
    Hoshika Y, Watanabe M, Inada N, Koike T.
    Ann Bot; 2013 Oct; 112(6):1149-58. PubMed ID: 23904447
    [Abstract] [Full Text] [Related]

  • 18. Effects of carbon dioxide concentration and nutrition on photosynthetic functions of white birch seedlings.
    Zhang S, Dang QL.
    Tree Physiol; 2006 Nov; 26(11):1457-67. PubMed ID: 16877330
    [Abstract] [Full Text] [Related]

  • 19. Bioenergy sorghum maintains photosynthetic capacity in elevated ozone concentrations.
    Li S, Moller CA, Mitchell NG, Lee D, Ainsworth EA.
    Plant Cell Environ; 2021 Mar; 44(3):729-746. PubMed ID: 33245145
    [Abstract] [Full Text] [Related]

  • 20. Effects of elevated concentrations of ozone and carbon dioxide on the electrical impedance of leaves of silver birch (Betula pendula) clones.
    Repo T, Oksanen E, Vapaavuori E.
    Tree Physiol; 2004 Jul; 24(7):833-43. PubMed ID: 15123455
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.