These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


322 related items for PubMed ID: 24369822

  • 1. One-electron oxidation reactions of purine and pyrimidine bases in cellular DNA.
    Cadet J, Wagner JR, Shafirovich V, Geacintov NE.
    Int J Radiat Biol; 2014 Jun; 90(6):423-32. PubMed ID: 24369822
    [Abstract] [Full Text] [Related]

  • 2. Biphotonic Ionization of DNA: From Model Studies to Cell.
    Cadet J, Wagner JR, Angelov D.
    Photochem Photobiol; 2019 Jan; 95(1):59-72. PubMed ID: 30380156
    [Abstract] [Full Text] [Related]

  • 3. Oxidatively generated base damage to cellular DNA by hydroxyl radical and one-electron oxidants: similarities and differences.
    Cadet J, Wagner JR.
    Arch Biochem Biophys; 2014 Sep 01; 557():47-54. PubMed ID: 24820329
    [Abstract] [Full Text] [Related]

  • 4. Oxidation of DNA: damage to nucleobases.
    Kanvah S, Joseph J, Schuster GB, Barnett RN, Cleveland CL, Landman U.
    Acc Chem Res; 2010 Feb 16; 43(2):280-7. PubMed ID: 19938827
    [Abstract] [Full Text] [Related]

  • 5. Interstrand Crosslinking Involving Guanine: A New Major UVC Laser-Induced Biphotonic Oxidatively Generated DNA Damage.
    Angelov D, Lone IN, Menoni H, Cadet J.
    Photochem Photobiol; 2022 May 16; 98(3):662-670. PubMed ID: 34958483
    [Abstract] [Full Text] [Related]

  • 6. Contribution of oxidation reactions to photo-induced damage to cellular DNA.
    Cadet J, Angelov D, Di Mascio P, Wagner JR.
    Photochem Photobiol; 2024 May 16; 100(5):1157-1185. PubMed ID: 38970297
    [Abstract] [Full Text] [Related]

  • 7. DNA lesions derived from the site selective oxidation of Guanine by carbonate radical anions.
    Joffe A, Geacintov NE, Shafirovich V.
    Chem Res Toxicol; 2003 Dec 16; 16(12):1528-38. PubMed ID: 14680366
    [Abstract] [Full Text] [Related]

  • 8. Oxidative degradation pathways of cellular DNA: product formation and mechanistic insights.
    Cadet J.
    Free Radic Biol Med; 2014 Oct 16; 75 Suppl 1():S2. PubMed ID: 26461303
    [Abstract] [Full Text] [Related]

  • 9. Oxidatively generated damage to cellular DNA by UVB and UVA radiation.
    Cadet J, Douki T, Ravanat JL.
    Photochem Photobiol; 2015 Oct 16; 91(1):140-55. PubMed ID: 25327445
    [Abstract] [Full Text] [Related]

  • 10. Oxidation reactions of cytosine DNA components by hydroxyl radical and one-electron oxidants in aerated aqueous solutions.
    Wagner JR, Cadet J.
    Acc Chem Res; 2010 Apr 20; 43(4):564-71. PubMed ID: 20078112
    [Abstract] [Full Text] [Related]

  • 11. DNA base damage by reactive oxygen species, oxidizing agents, and UV radiation.
    Cadet J, Wagner JR.
    Cold Spring Harb Perspect Biol; 2013 Feb 01; 5(2):. PubMed ID: 23378590
    [Abstract] [Full Text] [Related]

  • 12. Oxidative damage to DNA: formation, measurement and biochemical features.
    Cadet J, Douki T, Gasparutto D, Ravanat JL.
    Mutat Res; 2003 Oct 29; 531(1-2):5-23. PubMed ID: 14637244
    [Abstract] [Full Text] [Related]

  • 13. Oxidative DNA damage associated with combination of guanine and superoxide radicals and repair mechanisms via radical trapping.
    Misiaszek R, Crean C, Joffe A, Geacintov NE, Shafirovich V.
    J Biol Chem; 2004 Jul 30; 279(31):32106-15. PubMed ID: 15152004
    [Abstract] [Full Text] [Related]

  • 14. Protection against radiation-induced degradation of DNA bases by polyamines.
    Douki T, Bretonniere Y, Cadet J.
    Radiat Res; 2000 Jan 30; 153(1):29-35. PubMed ID: 10630975
    [Abstract] [Full Text] [Related]

  • 15. Biologically relevant oxidants and terminology, classification and nomenclature of oxidatively generated damage to nucleobases and 2-deoxyribose in nucleic acids.
    Cadet J, Loft S, Olinski R, Evans MD, Bialkowski K, Richard Wagner J, Dedon PC, Møller P, Greenberg MM, Cooke MS.
    Free Radic Res; 2012 Apr 30; 46(4):367-81. PubMed ID: 22263561
    [Abstract] [Full Text] [Related]

  • 16. Generation of guanine-thymine cross-links in human cells by one-electron oxidation mechanisms.
    Madugundu GS, Wagner JR, Cadet J, Kropachev K, Yun BH, Geacintov NE, Shafirovich V.
    Chem Res Toxicol; 2013 Jul 15; 26(7):1031-3. PubMed ID: 23734842
    [Abstract] [Full Text] [Related]

  • 17. Oxidatively generated damage to the guanine moiety of DNA: mechanistic aspects and formation in cells.
    Cadet J, Douki T, Ravanat JL.
    Acc Chem Res; 2008 Aug 15; 41(8):1075-83. PubMed ID: 18666785
    [Abstract] [Full Text] [Related]

  • 18. DNA sequence context as a determinant of the quantity and chemistry of guanine oxidation produced by hydroxyl radicals and one-electron oxidants.
    Margolin Y, Shafirovich V, Geacintov NE, DeMott MS, Dedon PC.
    J Biol Chem; 2008 Dec 19; 283(51):35569-78. PubMed ID: 18948263
    [Abstract] [Full Text] [Related]

  • 19. Formation of 8-oxo-7,8-dihydroguanine-radicals in gamma-irradiated DNA by multiple one-electron oxidations.
    Shukla LI, Adhikary A, Pazdro R, Becker D, Sevilla MD.
    Nucleic Acids Res; 2004 Dec 19; 32(22):6565-74. PubMed ID: 15601999
    [Abstract] [Full Text] [Related]

  • 20. Electron-transfer-induced acidity/basicity and reactivity changes of purine and pyrimidine bases. Consequences of redox processes for DNA base pairs.
    Steenken S.
    Free Radic Res Commun; 1992 Dec 19; 16(6):349-79. PubMed ID: 1325399
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 17.