These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


285 related items for PubMed ID: 24373996

  • 1. Crosstalk between mitochondrial stress signals regulates yeast chronological lifespan.
    Schroeder EA, Shadel GS.
    Mech Ageing Dev; 2014 Jan; 135():41-9. PubMed ID: 24373996
    [Abstract] [Full Text] [Related]

  • 2. Oxidative DNA damage causes mitochondrial genomic instability in Saccharomyces cerevisiae.
    Doudican NA, Song B, Shadel GS, Doetsch PW.
    Mol Cell Biol; 2005 Jun; 25(12):5196-204. PubMed ID: 15923634
    [Abstract] [Full Text] [Related]

  • 3. Epigenetic silencing mediates mitochondria stress-induced longevity.
    Schroeder EA, Raimundo N, Shadel GS.
    Cell Metab; 2013 Jun 04; 17(6):954-964. PubMed ID: 23747251
    [Abstract] [Full Text] [Related]

  • 4. Extension of chronological life span by reduced TOR signaling requires down-regulation of Sch9p and involves increased mitochondrial OXPHOS complex density.
    Pan Y, Shadel GS.
    Aging (Albany NY); 2009 Jan 28; 1(1):131-45. PubMed ID: 20157595
    [Abstract] [Full Text] [Related]

  • 5. Mitochondrial dysfunction due to oxidative mitochondrial DNA damage is reduced through cooperative actions of diverse proteins.
    O'Rourke TW, Doudican NA, Mackereth MD, Doetsch PW, Shadel GS.
    Mol Cell Biol; 2002 Jun 28; 22(12):4086-93. PubMed ID: 12024022
    [Abstract] [Full Text] [Related]

  • 6. Ntg1p, the base excision repair protein, generates mutagenic intermediates in yeast mitochondrial DNA.
    Phadnis N, Mehta R, Meednu N, Sia EA.
    DNA Repair (Amst); 2006 Jul 13; 5(7):829-39. PubMed ID: 16730479
    [Abstract] [Full Text] [Related]

  • 7. Reactive oxygen species regulate DNA copy number in isolated yeast mitochondria by triggering recombination-mediated replication.
    Hori A, Yoshida M, Shibata T, Ling F.
    Nucleic Acids Res; 2009 Feb 13; 37(3):749-61. PubMed ID: 19074198
    [Abstract] [Full Text] [Related]

  • 8. Cell cycle- and ribonucleotide reductase-driven changes in mtDNA copy number influence mtDNA Inheritance without compromising mitochondrial gene expression.
    Lebedeva MA, Shadel GS.
    Cell Cycle; 2007 Aug 15; 6(16):2048-57. PubMed ID: 17721079
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Saccharomyces cerevisiae Ntg1p and Ntg2p: broad specificity N-glycosylases for the repair of oxidative DNA damage in the nucleus and mitochondria.
    You HJ, Swanson RL, Harrington C, Corbett AH, Jinks-Robertson S, Sentürker S, Wallace SS, Boiteux S, Dizdaroglu M, Doetsch PW.
    Biochemistry; 1999 Aug 31; 38(35):11298-306. PubMed ID: 10471279
    [Abstract] [Full Text] [Related]

  • 11. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance.
    Zhao M, Wang Y, Li L, Liu S, Wang C, Yuan Y, Yang G, Chen Y, Cheng J, Lu Y, Liu J.
    Theranostics; 2021 Aug 31; 11(4):1845-1863. PubMed ID: 33408785
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Differential involvement of the related DNA helicases Pif1p and Rrm3p in mtDNA point mutagenesis and stability.
    O'Rourke TW, Doudican NA, Zhang H, Eaton JS, Doetsch PW, Shadel GS.
    Gene; 2005 Jul 18; 354():86-92. PubMed ID: 15907372
    [Abstract] [Full Text] [Related]

  • 14. Rad53 is essential for a mitochondrial DNA inheritance checkpoint regulating G1 to S progression.
    Crider DG, García-Rodríguez LJ, Srivastava P, Peraza-Reyes L, Upadhyaya K, Boldogh IR, Pon LA.
    J Cell Biol; 2012 Sep 03; 198(5):793-8. PubMed ID: 22927468
    [Abstract] [Full Text] [Related]

  • 15. The efficiency of mitochondrial electron transport chain is increased in the long-lived mrg19 Saccharomyces cerevisiae.
    Mittal N, Babu MM, Roy N.
    Aging Cell; 2009 Dec 03; 8(6):643-53. PubMed ID: 19732042
    [Abstract] [Full Text] [Related]

  • 16. Caloric Restriction-Induced Extension of Chronological Lifespan Requires Intact Respiration in Budding Yeast.
    Kwon YY, Lee SK, Lee CK.
    Mol Cells; 2017 Apr 03; 40(4):307-313. PubMed ID: 28427248
    [Abstract] [Full Text] [Related]

  • 17. The migration of mitochondrial DNA fragments to the nucleus affects the chronological aging process of Saccharomyces cerevisiae.
    Cheng X, Ivessa AS.
    Aging Cell; 2010 Oct 03; 9(5):919-23. PubMed ID: 20626726
    [Abstract] [Full Text] [Related]

  • 18. Mitochondrial DNA oxidative damage and mutagenesis in Saccharomyces cerevisiae.
    Griffiths LM, Doudican NA, Shadel GS, Doetsch PW.
    Methods Mol Biol; 2009 Oct 03; 554():267-86. PubMed ID: 19513680
    [Abstract] [Full Text] [Related]

  • 19. Calorie restriction extends the chronological lifespan of Saccharomyces cerevisiae independently of the Sirtuins.
    Smith DL, McClure JM, Matecic M, Smith JS.
    Aging Cell; 2007 Oct 03; 6(5):649-62. PubMed ID: 17711561
    [Abstract] [Full Text] [Related]

  • 20. Evidence for double-strand break mediated mitochondrial DNA replication in Saccharomyces cerevisiae.
    Prasai K, Robinson LC, Scott RS, Tatchell K, Harrison L.
    Nucleic Acids Res; 2017 Jul 27; 45(13):7760-7773. PubMed ID: 28549155
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.