These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


541 related items for PubMed ID: 24376095

  • 1. Identification of redox-sensitive cysteines in the Arabidopsis proteome using OxiTRAQ, a quantitative redox proteomics method.
    Liu P, Zhang H, Wang H, Xia Y.
    Proteomics; 2014 Mar; 14(6):750-62. PubMed ID: 24376095
    [Abstract] [Full Text] [Related]

  • 2. Quantifying reversible oxidation of protein thiols in photosynthetic organisms.
    Slade WO, Werth EG, McConnell EW, Alvarez S, Hicks LM.
    J Am Soc Mass Spectrom; 2015 Apr; 26(4):631-40. PubMed ID: 25698223
    [Abstract] [Full Text] [Related]

  • 3. Quantitative redox proteomics: the NOxICAT method.
    Lindemann C, Leichert LI.
    Methods Mol Biol; 2012 Apr; 893():387-403. PubMed ID: 22665313
    [Abstract] [Full Text] [Related]

  • 4. Proteomic analysis of early-responsive redox-sensitive proteins in Arabidopsis.
    Wang H, Wang S, Lu Y, Alvarez S, Hicks LM, Ge X, Xia Y.
    J Proteome Res; 2012 Jan 01; 11(1):412-24. PubMed ID: 22050424
    [Abstract] [Full Text] [Related]

  • 5. Differential redox proteomics allows identification of proteins reversibly oxidized at cysteine residues in endothelial cells in response to acute hypoxia.
    Izquierdo-Álvarez A, Ramos E, Villanueva J, Hernansanz-Agustín P, Fernández-Rodríguez R, Tello D, Carrascal M, Martínez-Ruiz A.
    J Proteomics; 2012 Sep 18; 75(17):5449-62. PubMed ID: 22800641
    [Abstract] [Full Text] [Related]

  • 6. Thiol-disulfide redox proteomics in plant research.
    Muthuramalingam M, Dietz KJ, Ströher E.
    Methods Mol Biol; 2010 Sep 18; 639():219-38. PubMed ID: 20387049
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Mapping the cysteine proteome: analysis of redox-sensing thiols.
    Jones DP, Go YM.
    Curr Opin Chem Biol; 2011 Feb 18; 15(1):103-12. PubMed ID: 21216657
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Covalent selection of the thiol proteome on activated thiol sepharose: a robust tool for redox proteomics.
    Hu W, Tedesco S, Faedda R, Petrone G, Cacciola SO, O'Keefe A, Sheehan D.
    Talanta; 2010 Feb 15; 80(4):1569-75. PubMed ID: 20082816
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Thiol redox-sensitive seed proteome in dormant and non-dormant hybrid genotypes of wheat.
    Bykova NV, Hoehn B, Rampitsch C, Hu J, Stebbing JA, Knox R.
    Phytochemistry; 2011 Jul 15; 72(10):1162-72. PubMed ID: 21295800
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. SPEAR: A proteomics approach for simultaneous protein expression and redox analysis.
    Doron S, Lampl N, Savidor A, Katina C, Gabashvili A, Levin Y, Rosenwasser S.
    Free Radic Biol Med; 2021 Nov 20; 176():366-377. PubMed ID: 34619326
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 28.