These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
261 related items for PubMed ID: 24376254
1. Comparative proteomic analysis of differentially expressed proteins in the early milky stage of rice grains during high temperature stress. Liao JL, Zhou HW, Zhang HY, Zhong PA, Huang YJ. J Exp Bot; 2014 Feb; 65(2):655-71. PubMed ID: 24376254 [Abstract] [Full Text] [Related]
2. Transcriptome changes in rice (Oryza sativa L.) in response to high night temperature stress at the early milky stage. Liao JL, Zhou HW, Peng Q, Zhong PA, Zhang HY, He C, Huang YJ. BMC Genomics; 2015 Jan 23; 16(1):18. PubMed ID: 25928563 [Abstract] [Full Text] [Related]
3. Quantitative iTRAQ-based proteomic analysis of rice grains to assess high night temperature stress. Zhang HY, Lei G, Zhou HW, He C, Liao JL, Huang YJ. Proteomics; 2017 Mar 23; 17(5):. PubMed ID: 28101936 [Abstract] [Full Text] [Related]
4. Identification of candidate genes related to rice grain weight under high-temperature stress. Liao JL, Zhang HY, Liu JB, Zhong PA, Huang YJ. Plant Sci; 2012 Nov 23; 196():32-43. PubMed ID: 23017897 [Abstract] [Full Text] [Related]
5. Rice sHsp genes: genomic organization and expression profiling under stress and development. Sarkar NK, Kim YK, Grover A. BMC Genomics; 2009 Aug 24; 10():393. PubMed ID: 19703271 [Abstract] [Full Text] [Related]
6. Comparative proteomics of the superior and inferior spikelets at the early grain filling stage in rice cultivars contrast for panicle compactness and ethylene evolution. Das K, Panda BB, Sekhar S, Kariali E, Mohapatra PK, Shaw BP. J Plant Physiol; 2016 Sep 01; 202():65-74. PubMed ID: 27450495 [Abstract] [Full Text] [Related]
7. Gel-free/label-free proteomic analysis of developing rice grains under heat stress. Timabud T, Yin X, Pongdontri P, Komatsu S. J Proteomics; 2016 Feb 05; 133():1-19. PubMed ID: 26655677 [Abstract] [Full Text] [Related]
8. Dynamic proteomic analysis reveals a switch between central carbon metabolism and alcoholic fermentation in rice filling grains. Xu SB, Li T, Deng ZY, Chong K, Xue Y, Wang T. Plant Physiol; 2008 Oct 05; 148(2):908-25. PubMed ID: 18753281 [Abstract] [Full Text] [Related]
9. iTRAQ-Based Quantitative Proteomics Analysis of Black Rice Grain Development Reveals Metabolic Pathways Associated with Anthocyanin Biosynthesis. Chen L, Huang Y, Xu M, Cheng Z, Zhang D, Zheng J. PLoS One; 2016 Oct 05; 11(7):e0159238. PubMed ID: 27415428 [Abstract] [Full Text] [Related]
11. Proteomic Analysis of Rice Seedlings Under Cold Stress. Ji L, Zhou P, Zhu Y, Liu F, Li R, Qiu Y. Protein J; 2017 Aug 05; 36(4):299-307. PubMed ID: 28555319 [Abstract] [Full Text] [Related]
12. Proteomic profiling of rice embryos from a hybrid rice cultivar and its parental lines. Wang W, Meng B, Ge X, Song S, Yang Y, Yu X, Wang L, Hu S, Liu S, Yu J. Proteomics; 2008 Nov 05; 8(22):4808-21. PubMed ID: 18850630 [Abstract] [Full Text] [Related]
13. Comparative proteomic study reveals dynamic proteome changes between superhybrid rice LYP9 and its parents at different developmental stages. Zhang C, Yin Y, Zhang A, Lu Q, Wen X, Zhu Z, Zhang L, Lu C. J Plant Physiol; 2012 Mar 01; 169(4):387-98. PubMed ID: 22209166 [Abstract] [Full Text] [Related]
14. Assimilate translocation and expression of sucrose transporter, OsSUT1, contribute to high-performance ripening under heat stress in the heat-tolerant rice cultivar Genkitsukushi. Miyazaki M, Araki M, Okamura K, Ishibashi Y, Yuasa T, Iwaya-Inoue M. J Plant Physiol; 2013 Dec 15; 170(18):1579-84. PubMed ID: 23910376 [Abstract] [Full Text] [Related]
15. Elucidating stress proteins in rice (Oryza sativa L.) genotype under elevated temperature: a proteomic approach to understand heat stress response. Kumar N, Suyal DC, Sharma IP, Verma A, Singh H. 3 Biotech; 2017 Jul 15; 7(3):205. PubMed ID: 28667647 [Abstract] [Full Text] [Related]
16. Proteomic changes in rice leaves grown under open field high temperature stress conditions. Das S, Krishnan P, Mishra V, Kumar R, Ramakrishnan B, Singh NK. Mol Biol Rep; 2015 Nov 15; 42(11):1545-58. PubMed ID: 26323334 [Abstract] [Full Text] [Related]
17. Chilling stress-induced proteomic changes in rice roots. Lee DG, Ahsan N, Lee SH, Lee JJ, Bahk JD, Kang KY, Lee BH. J Plant Physiol; 2009 Jan 01; 166(1):1-11. PubMed ID: 18433929 [Abstract] [Full Text] [Related]
18. Proteomic identification of differentially expressed proteins in the anoxic rice coleoptile. Sadiq I, Fanucchi F, Paparelli E, Alpi E, Bachi A, Alpi A, Perata P. J Plant Physiol; 2011 Dec 15; 168(18):2234-43. PubMed ID: 21920630 [Abstract] [Full Text] [Related]
19. Different effects of night versus day high temperature on rice quality and accumulation profiling of rice grain proteins during grain filling. Li H, Chen Z, Hu M, Wang Z, Hua H, Yin C, Zeng H. Plant Cell Rep; 2011 Sep 15; 30(9):1641-59. PubMed ID: 21556707 [Abstract] [Full Text] [Related]
20. Reproductive tissues-specific meta-QTLs and candidate genes for development of heat-tolerant rice cultivars. Raza Q, Riaz A, Bashir K, Sabar M. Plant Mol Biol; 2020 Sep 15; 104(1-2):97-112. PubMed ID: 32643113 [Abstract] [Full Text] [Related] Page: [Next] [New Search]