These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
261 related items for PubMed ID: 24376809
1. Defining the role of fluid shear stress in the expression of early signaling markers for calcific aortic valve disease. Sun L, Rajamannan NM, Sucosky P. PLoS One; 2013; 8(12):e84433. PubMed ID: 24376809 [Abstract] [Full Text] [Related]
2. Ex vivo evidence for the contribution of hemodynamic shear stress abnormalities to the early pathogenesis of calcific bicuspid aortic valve disease. Sun L, Chandra S, Sucosky P. PLoS One; 2012; 7(10):e48843. PubMed ID: 23119099 [Abstract] [Full Text] [Related]
3. Bone morphogenetic protein-4 and transforming growth factor-beta1 mechanisms in acute valvular response to supra-physiologic hemodynamic stresses. Sun L, Sucosky P. World J Cardiol; 2015 Jun 26; 7(6):331-43. PubMed ID: 26131338 [Abstract] [Full Text] [Related]
4. Computational assessment of bicuspid aortic valve wall-shear stress: implications for calcific aortic valve disease. Chandra S, Rajamannan NM, Sucosky P. Biomech Model Mechanobiol; 2012 Sep 26; 11(7):1085-96. PubMed ID: 22294208 [Abstract] [Full Text] [Related]
12. Transforming growth factor-β1 promotes fibrosis but attenuates calcification of valvular tissue applied as a three-dimensional calcific aortic valve disease model. Jenke A, Kistner J, Saradar S, Chekhoeva A, Yazdanyar M, Bergmann AK, Rötepohl MV, Lichtenberg A, Akhyari P. Am J Physiol Heart Circ Physiol; 2020 Nov 01; 319(5):H1123-H1141. PubMed ID: 32986963 [Abstract] [Full Text] [Related]
13. Potential drug targets for calcific aortic valve disease. Hutcheson JD, Aikawa E, Merryman WD. Nat Rev Cardiol; 2014 Apr 01; 11(4):218-31. PubMed ID: 24445487 [Abstract] [Full Text] [Related]
14. Progressive aortic valve calcification: three-dimensional visualization and biomechanical analysis. Halevi R, Hamdan A, Marom G, Mega M, Raanani E, Haj-Ali R. J Biomech; 2015 Feb 05; 48(3):489-97. PubMed ID: 25553668 [Abstract] [Full Text] [Related]
15. Mechanosensitive microRNA-181b Regulates Aortic Valve Endothelial Matrix Degradation by Targeting TIMP3. Heath JM, Fernandez Esmerats J, Khambouneheuang L, Kumar S, Simmons R, Jo H. Cardiovasc Eng Technol; 2018 Jun 05; 9(2):141-150. PubMed ID: 28236165 [Abstract] [Full Text] [Related]
16. Activation of TLR3 induces osteogenic responses in human aortic valve interstitial cells through the NF-κB and ERK1/2 pathways. Zhan Q, Song R, Zeng Q, Yao Q, Ao L, Xu D, Fullerton DA, Meng X. Int J Biol Sci; 2015 Jun 05; 11(4):482-93. PubMed ID: 25798067 [Abstract] [Full Text] [Related]
17. Multimodality and molecular imaging of matrix metalloproteinase activation in calcific aortic valve disease. Jung JJ, Razavian M, Challa AA, Nie L, Golestani R, Zhang J, Ye Y, Russell KS, Robinson SP, Heistad DD, Sadeghi MM. J Nucl Med; 2015 Jun 05; 56(6):933-8. PubMed ID: 25908827 [Abstract] [Full Text] [Related]
18. Bone Morphogenetic Protein Signaling Is Required for Aortic Valve Calcification. Gomez-Stallons MV, Wirrig-Schwendeman EE, Hassel KR, Conway SJ, Yutzey KE. Arterioscler Thromb Vasc Biol; 2016 Jul 05; 36(7):1398-405. PubMed ID: 27199449 [Abstract] [Full Text] [Related]
19. The congenital bicuspid aortic valve can experience high-frequency unsteady shear stresses on its leaflet surface. Yap CH, Saikrishnan N, Tamilselvan G, Vasilyev N, Yoganathan AP. Am J Physiol Heart Circ Physiol; 2012 Sep 15; 303(6):H721-31. PubMed ID: 22821994 [Abstract] [Full Text] [Related]
20. Adenosine derived from ecto-nucleotidases in calcific aortic valve disease promotes mineralization through A2a adenosine receptor. Mahmut A, Boulanger MC, Bouchareb R, Hadji F, Mathieu P. Cardiovasc Res; 2015 Apr 01; 106(1):109-20. PubMed ID: 25644539 [Abstract] [Full Text] [Related] Page: [Next] [New Search]