These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
457 related items for PubMed ID: 24377312
1. "Signal off" aptasensor based on enzyme inhibition induced by conformational switch. Prieto-Simón B, Samitier J. Anal Chem; 2014 Feb 04; 86(3):1437-44. PubMed ID: 24377312 [Abstract] [Full Text] [Related]
2. Fabricated aptamer-based electrochemical "signal-off" sensor of ochratoxin A. Kuang H, Chen W, Xu D, Xu L, Zhu Y, Liu L, Chu H, Peng C, Xu C, Zhu S. Biosens Bioelectron; 2010 Oct 15; 26(2):710-6. PubMed ID: 20643539 [Abstract] [Full Text] [Related]
3. Rolling chain amplification based signal-enhanced electrochemical aptasensor for ultrasensitive detection of ochratoxin A. Huang L, Wu J, Zheng L, Qian H, Xue F, Wu Y, Pan D, Adeloju SB, Chen W. Anal Chem; 2013 Nov 19; 85(22):10842-9. PubMed ID: 24206525 [Abstract] [Full Text] [Related]
4. Simply amplified electrochemical aptasensor of ochratoxin A based on exonuclease-catalyzed target recycling. Tong P, Zhang L, Xu JJ, Chen HY. Biosens Bioelectron; 2011 Nov 15; 29(1):97-101. PubMed ID: 21855315 [Abstract] [Full Text] [Related]
5. Ultrasensitive one-step rapid detection of ochratoxin A by the folding-based electrochemical aptasensor. Wu J, Chu H, Mei Z, Deng Y, Xue F, Zheng L, Chen W. Anal Chim Acta; 2012 Nov 13; 753():27-31. PubMed ID: 23107133 [Abstract] [Full Text] [Related]
6. Fluorescent sensing ochratoxin A with single fluorophore-labeled aptamer. Zhao Q, Geng X, Wang H. Anal Bioanal Chem; 2013 Jul 13; 405(19):6281-6. PubMed ID: 23728728 [Abstract] [Full Text] [Related]
7. Aptamer-based electrochemical sensors that are not based on the target binding-induced conformational change of aptamers. Lu Y, Zhu N, Yu P, Mao L. Analyst; 2008 Sep 13; 133(9):1256-60. PubMed ID: 18709204 [Abstract] [Full Text] [Related]
8. Direct detection of OTA by impedimetric aptasensor based on modified polypyrrole-dendrimers. Mejri-Omrani N, Miodek A, Zribi B, Marrakchi M, Hamdi M, Marty JL, Korri-Youssoufi H. Anal Chim Acta; 2016 May 12; 920():37-46. PubMed ID: 27114221 [Abstract] [Full Text] [Related]
9. A signal-on fluorescent aptasensor based on Tb3+ and structure-switching aptamer for label-free detection of Ochratoxin A in wheat. Zhang J, Zhang X, Yang G, Chen J, Wang S. Biosens Bioelectron; 2013 Mar 15; 41():704-9. PubMed ID: 23089328 [Abstract] [Full Text] [Related]
10. An Electrochemical Sensor Based on Structure Switching of Dithiol-modified Aptamer for Simple Detection of Ochratoxin A. Mazaafrianto DN, Ishida A, Maeki M, Tani H, Tokeshi M. Anal Sci; 2019 Nov 10; 35(11):1221-1226. PubMed ID: 31327816 [Abstract] [Full Text] [Related]
11. Electrochemical aptamer sensor for small molecule assays. Liu X, Li W, Xu X, Zhou J, Nie Z. Methods Mol Biol; 2012 Nov 10; 800():119-32. PubMed ID: 21964786 [Abstract] [Full Text] [Related]
12. Ultrasensitive electrochemical aptasensor for ochratoxin A based on two-level cascaded signal amplification strategy. Yang X, Qian J, Jiang L, Yan Y, Wang K, Liu Q, Wang K. Bioelectrochemistry; 2014 Apr 10; 96():7-13. PubMed ID: 24355136 [Abstract] [Full Text] [Related]
13. Label-free and sensitive faradic impedance aptasensor for the determination of lysozyme based on target-induced aptamer displacement. Peng Y, Zhang D, Li Y, Qi H, Gao Q, Zhang C. Biosens Bioelectron; 2009 Sep 15; 25(1):94-9. PubMed ID: 19559590 [Abstract] [Full Text] [Related]
14. Ultrasensitive electrochemiluminescent aptasensor for ochratoxin A detection with the loop-mediated isothermal amplification. Yuan Y, Wei S, Liu G, Xie S, Chai Y, Yuan R. Anal Chim Acta; 2014 Feb 06; 811():70-5. PubMed ID: 24456596 [Abstract] [Full Text] [Related]
15. Aptamer-DNAzyme hairpins for biosensing of Ochratoxin A. Yang C, Lates V, Prieto-Simón B, Marty JL, Yang X. Biosens Bioelectron; 2012 Feb 15; 32(1):208-12. PubMed ID: 22221796 [Abstract] [Full Text] [Related]
16. An electrochemical competitive biosensor for ochratoxin A based on a DNA biotinylated aptamer. Bonel L, Vidal JC, Duato P, Castillo JR. Biosens Bioelectron; 2011 Mar 15; 26(7):3254-9. PubMed ID: 21256729 [Abstract] [Full Text] [Related]
17. Amplified fluorescent aptasensor through catalytic recycling for highly sensitive detection of ochratoxin A. Wei Y, Zhang J, Wang X, Duan Y. Biosens Bioelectron; 2015 Mar 15; 65():16-22. PubMed ID: 25461133 [Abstract] [Full Text] [Related]
18. Homogeneous electrochemical detection of ochratoxin A in foodstuff using aptamer-graphene oxide nanosheets and DNase I-based target recycling reaction. Sun AL, Zhang YF, Sun GP, Wang XN, Tang D. Biosens Bioelectron; 2017 Mar 15; 89(Pt 1):659-665. PubMed ID: 26707001 [Abstract] [Full Text] [Related]
19. Amplified impedimetric aptasensor based on gold nanoparticles covalently bound graphene sheet for the picomolar detection of ochratoxin A. Jiang L, Qian J, Yang X, Yan Y, Liu Q, Wang K, Wang K. Anal Chim Acta; 2014 Jan 02; 806():128-35. PubMed ID: 24331048 [Abstract] [Full Text] [Related]
20. An ultrasensitive signal-on electrochemical aptasensor via target-induced conjunction of split aptamer fragments. Chen J, Zhang J, Li J, Yang HH, Fu F, Chen G. Biosens Bioelectron; 2010 Jan 15; 25(5):996-1000. PubMed ID: 19818593 [Abstract] [Full Text] [Related] Page: [Next] [New Search]