These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


159 related items for PubMed ID: 24380974

  • 1. Fates of Microcystis aeruginosa cells and associated microcystins in sediment and the effect of coagulation process on them.
    Chen X, Xiang H, Hu Y, Zhang Y, Ouyang L, Gao M.
    Toxins (Basel); 2013 Dec 30; 6(1):152-67. PubMed ID: 24380974
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Blooming of Microcystis aeruginosa in the reservoir of the reclaimed land and discharge of microcystins to Isahaya Bay (Japan).
    Umehara A, Tsutsumi H, Takahashi T.
    Environ Sci Pollut Res Int; 2012 Sep 30; 19(8):3257-67. PubMed ID: 22374190
    [Abstract] [Full Text] [Related]

  • 4. Evaluation of the potential of anoxic biodegradation of intracellular and dissolved microcystins in lake sediments.
    Wu X, Wang C, Tian C, Xiao B, Song L.
    J Hazard Mater; 2015 Apr 09; 286():395-401. PubMed ID: 25603288
    [Abstract] [Full Text] [Related]

  • 5. The fate of Microcystis aeruginosa cells during the ferric chloride coagulation and flocs storage processes.
    Li X, Pei H, Hu W, Meng P, Sun F, Ma G, Xu X, Li Y.
    Environ Technol; 2015 Apr 09; 36(5-8):920-8. PubMed ID: 25241771
    [Abstract] [Full Text] [Related]

  • 6. The behaviors of Microcystis aeruginosa and microcystins during the Fe2+/persulfate (PS) preoxidation-coagulation and flocs storage period.
    Song Q, Niu X, Zhang D, Song X, Li Y, Ma J, Lai S, Yang Z, Zhou S.
    Environ Res; 2020 Jul 09; 186():109549. PubMed ID: 32325291
    [Abstract] [Full Text] [Related]

  • 7. Effect of chlorination on Microcystis aeruginosa cell integrity and subsequent microcystin release and degradation.
    Daly RI, Ho L, Brookes JD.
    Environ Sci Technol; 2007 Jun 15; 41(12):4447-53. PubMed ID: 17626450
    [Abstract] [Full Text] [Related]

  • 8. [Isolation and activity of bacteria for the biodegradation of microcystins].
    Yan H, Deng YM, Zou H, Li XL, Ye CM.
    Huan Jing Ke Xue; 2004 Nov 15; 25(6):49-53. PubMed ID: 15759880
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Grazing on Microcystis aeruginosa and degradation of microcystins by the heterotrophic flagellate Diphylleia rotans.
    Mohamed ZA, Al-Shehri AM.
    Ecotoxicol Environ Saf; 2013 Oct 15; 96():48-52. PubMed ID: 23856124
    [Abstract] [Full Text] [Related]

  • 12. Role of divalent metals Cu2+ and Zn2+ in Microcystis aeruginosa proliferation and production of toxic microcystins.
    Ao D, Lei Z, Dzakpasu M, Chen R.
    Toxicon; 2019 Dec 15; 170():51-59. PubMed ID: 31526809
    [Abstract] [Full Text] [Related]

  • 13. Cerium exposure in Lake Taihu water aggravates microcystin pollution via enhancing endocytosis of Microcystis aeruginosa.
    Yang Q, Liu Y, Wang L, Zhou Q, Cheng M, Zhou J, Huang X.
    Environ Pollut; 2022 Jan 01; 292(Pt A):118308. PubMed ID: 34626705
    [Abstract] [Full Text] [Related]

  • 14. Estimation of production and sedimentation of cyanobacterial toxins (microcystin) based on nutrient budgets in the reservoir of Isahaya Bay, Japan.
    Umehara A, Komorita T, Takahashi T, Tsutsumi H.
    Ecotoxicol Environ Saf; 2019 Nov 15; 183():109477. PubMed ID: 31369939
    [Abstract] [Full Text] [Related]

  • 15. Reduction in microcystin concentrations in large and shallow lakes: water and sediment-interface contributions.
    Chen W, Song L, Peng L, Wan N, Zhang X, Gan N.
    Water Res; 2008 Feb 15; 42(3):763-73. PubMed ID: 17761208
    [Abstract] [Full Text] [Related]

  • 16. Fe2+ activating sodium percarbonate (SPC) to enhance removal of Microcystis aeruginosa and microcystins with pre-oxidation and in situ coagulation.
    Tian X, Li Y, Xu H, Pang Y, Zhang J, Pei H.
    J Hazard Mater; 2021 Jun 15; 412():125206. PubMed ID: 33516101
    [Abstract] [Full Text] [Related]

  • 17. [Effect of temperature on the translocation of exogenous 32P in water column, Microcystis aeruginosa and sediments].
    Shi X, Wang F, Jiang L, Zhou Z, Yang L, Kong Z, Gao G, Qin B.
    Ying Yong Sheng Tai Xue Bao; 2003 Nov 15; 14(11):1967-70. PubMed ID: 14997658
    [Abstract] [Full Text] [Related]

  • 18. Isolation of a Poterioochromonas capable of feeding on Microcystis aeruginosa and degrading microcystin-LR.
    Zhang X, Hu HY, Hong Y, Yang J.
    FEMS Microbiol Lett; 2008 Nov 15; 288(2):241-6. PubMed ID: 18811657
    [Abstract] [Full Text] [Related]

  • 19. Feedback Regulation between Aquatic Microorganisms and the Bloom-Forming Cyanobacterium Microcystis aeruginosa.
    Zhang M, Lu T, Paerl HW, Chen Y, Zhang Z, Zhou Z, Qian H.
    Appl Environ Microbiol; 2019 Nov 01; 85(21):. PubMed ID: 31420344
    [Abstract] [Full Text] [Related]

  • 20. Growth inhibition of the cyanobacterium Microcystis aeruginosa and degradation of its microcystin toxins by the fungus Trichoderma citrinoviride.
    Mohamed ZA, Hashem M, Alamri SA.
    Toxicon; 2014 Aug 01; 86():51-8. PubMed ID: 24874888
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 8.