These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Use of response surface methodology in a fed-batch process for optimization of tricarboxylic acid cycle intermediates to achieve high levels of canthaxanthin from Dietzia natronolimnaea HS-1. Nasri Nasrabadi MR, Razavi SH. J Biosci Bioeng; 2010 Apr; 109(4):361-8. PubMed ID: 20226378 [Abstract] [Full Text] [Related]
4. Canthaxanthin biosynthesis by Dietzia natronolimnaea HS-1: effects of inoculation and aeration rate. Rostami F, Razavi SH, Sepahi AA, Gharibzahedi SM. Braz J Microbiol; 2014 Apr; 45(2):447-56. PubMed ID: 25242927 [Abstract] [Full Text] [Related]
5. The effect of microdosimetric 12C6+ heavy ion irradiation and Mg2+ on canthaxanthin production in a novel strain of Dietzia natronolimnaea. Zhou X, Xie JR, Tao L, Xin ZJ, Zhao FW, Lu XH, Zhao MR, Wang L, Liang JP. BMC Microbiol; 2013 Sep 28; 13():213. PubMed ID: 24074304 [Abstract] [Full Text] [Related]
7. Optimization of process parameters by response surface methodology and kinetic modeling for batch production of canthaxanthin by Dietzia maris NIT-D (accession number: HM151403). Goswami G, Chakraborty S, Chaudhuri S, Dutta D. Bioprocess Biosyst Eng; 2012 Oct 28; 35(8):1375-88. PubMed ID: 22451081 [Abstract] [Full Text] [Related]
8. Efficient production of l-lactic acid using co-feeding strategy based on cane molasses/glucose carbon sources. Xu K, Xu P. Bioresour Technol; 2014 Feb 28; 153():23-9. PubMed ID: 24333698 [Abstract] [Full Text] [Related]
9. Characterizing the natural canthaxanthin/2-hydroxypropyl-β-cyclodextrin inclusion complex. Gharibzahedi SM, Razavi SH, Mousavi M. Carbohydr Polym; 2014 Jan 30; 101():1147-53. PubMed ID: 24299886 [Abstract] [Full Text] [Related]
10. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Yan D, Lu Y, Chen YF, Wu Q. Bioresour Technol; 2011 Jun 30; 102(11):6487-93. PubMed ID: 21474303 [Abstract] [Full Text] [Related]
13. Optimized fed-batch fermentation of Scheffersomyces stipitis for efficient production of ethanol from hexoses and pentoses. Unrean P, Nguyen NH. Appl Biochem Biotechnol; 2013 Mar 30; 169(6):1895-909. PubMed ID: 23344940 [Abstract] [Full Text] [Related]
14. A cost-effective cane molasses medium for enhanced cell-bound phytase production by Pichia anomala. Vohra A, Satyanarayana T. J Appl Microbiol; 2004 Mar 30; 97(3):471-6. PubMed ID: 15281926 [Abstract] [Full Text] [Related]
16. Efficient Conversion of Cane Molasses Towards High-Purity Isomaltulose and Cellular Lipid Using an Engineered Yarrowia lipolytica Strain in Fed-Batch Fermentation. Wang ZP, Wang QQ, Liu S, Liu XF, Yu XJ, Jiang YL. Molecules; 2019 Mar 28; 24(7):. PubMed ID: 30925836 [Abstract] [Full Text] [Related]
17. Application of process system engineering tools to the fed-batch production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from a vinasses-molasses Mixture. García C, Alcaraz W, Acosta-Cárdenas A, Ochoa S. Bioprocess Biosyst Eng; 2019 Jun 28; 42(6):1023-1037. PubMed ID: 30874887 [Abstract] [Full Text] [Related]
18. Ergosterol production from molasses by genetically modified Saccharomyces cerevisiae. He X, Guo X, Liu N, Zhang B. Appl Microbiol Biotechnol; 2007 May 28; 75(1):55-60. PubMed ID: 17225097 [Abstract] [Full Text] [Related]
19. Actinoplanes utahensis ZJB-08196 fed-batch fermentation at elevated osmolality for enhancing acarbose production. Wang YJ, Liu LL, Wang YS, Xue YP, Zheng YG, Shen YC. Bioresour Technol; 2012 Jan 28; 103(1):337-42. PubMed ID: 22029955 [Abstract] [Full Text] [Related]
20. Enhanced L-lysine production from pretreated beet molasses by engineered Escherichia coli in fed-batch fermentation. He X, Chen K, Li Y, Wang Z, Zhang H, Qian J, Ouyang P. Bioprocess Biosyst Eng; 2015 Aug 28; 38(8):1615-22. PubMed ID: 25899726 [Abstract] [Full Text] [Related] Page: [Next] [New Search]