These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


307 related items for PubMed ID: 24389997

  • 1. Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait.
    Guess TM, Stylianou AP, Kia M.
    J Biomech Eng; 2014 Feb; 136(2):021032. PubMed ID: 24389997
    [Abstract] [Full Text] [Related]

  • 2. Electromyography-Driven Forward Dynamics Simulation to Estimate In Vivo Joint Contact Forces During Normal, Smooth, and Bouncy Gaits.
    Razu SS, Guess TM.
    J Biomech Eng; 2018 Jul 01; 140(7):0710121-8. PubMed ID: 29164228
    [Abstract] [Full Text] [Related]

  • 3. Multibody muscle driven model of an instrumented prosthetic knee during squat and toe rise motions.
    Stylianou AP, Guess TM, Kia M.
    J Biomech Eng; 2013 Apr 01; 135(4):041008. PubMed ID: 24231902
    [Abstract] [Full Text] [Related]

  • 4. Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials.
    Kia M, Stylianou AP, Guess TM.
    Med Eng Phys; 2014 Mar 01; 36(3):335-44. PubMed ID: 24418154
    [Abstract] [Full Text] [Related]

  • 5. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
    Gerus P, Sartori M, Besier TF, Fregly BJ, Delp SL, Banks SA, Pandy MG, D'Lima DD, Lloyd DG.
    J Biomech; 2013 Nov 15; 46(16):2778-86. PubMed ID: 24074941
    [Abstract] [Full Text] [Related]

  • 6. Co-simulation of neuromuscular dynamics and knee mechanics during human walking.
    Thelen DG, Won Choi K, Schmitz AM.
    J Biomech Eng; 2014 Feb 15; 136(2):021033. PubMed ID: 24390129
    [Abstract] [Full Text] [Related]

  • 7. The Influence of Component Alignment and Ligament Properties on Tibiofemoral Contact Forces in Total Knee Replacement.
    Smith CR, Vignos MF, Lenhart RL, Kaiser J, Thelen DG.
    J Biomech Eng; 2016 Feb 15; 138(2):021017. PubMed ID: 26769446
    [Abstract] [Full Text] [Related]

  • 8. Tractive forces during rolling motion of the knee: implications for wear in total knee replacement.
    Wimmer MA, Andriacchi TP.
    J Biomech; 1997 Feb 15; 30(2):131-7. PubMed ID: 9001933
    [Abstract] [Full Text] [Related]

  • 9. Simultaneous prediction of muscle and contact forces in the knee during gait.
    Lin YC, Walter JP, Banks SA, Pandy MG, Fregly BJ.
    J Biomech; 2010 Mar 22; 43(5):945-52. PubMed ID: 19962703
    [Abstract] [Full Text] [Related]

  • 10. Concurrent prediction of ground reaction forces and moments and tibiofemoral contact forces during walking using musculoskeletal modelling.
    Peng Y, Zhang Z, Gao Y, Chen Z, Xin H, Zhang Q, Fan X, Jin Z.
    Med Eng Phys; 2018 Feb 22; 52():31-40. PubMed ID: 29269224
    [Abstract] [Full Text] [Related]

  • 11. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking.
    Serrancolí G, Kinney AL, Fregly BJ, Font-Llagunes JM.
    J Biomech Eng; 2016 Aug 01; 138(8):0810011-08100111. PubMed ID: 27210105
    [Abstract] [Full Text] [Related]

  • 12. Dynamic knee loads during gait predict proximal tibial bone distribution.
    Hurwitz DE, Sumner DR, Andriacchi TP, Sugar DA.
    J Biomech; 1998 May 01; 31(5):423-30. PubMed ID: 9727339
    [Abstract] [Full Text] [Related]

  • 13. Muscle synergies may improve optimization prediction of knee contact forces during walking.
    Walter JP, Kinney AL, Banks SA, D'Lima DD, Besier TF, Lloyd DG, Fregly BJ.
    J Biomech Eng; 2014 Feb 01; 136(2):021031. PubMed ID: 24402438
    [Abstract] [Full Text] [Related]

  • 14. How tibiofemoral alignment and contact locations affect predictions of medial and lateral tibiofemoral contact forces.
    Lerner ZF, DeMers MS, Delp SL, Browning RC.
    J Biomech; 2015 Feb 26; 48(4):644-650. PubMed ID: 25595425
    [Abstract] [Full Text] [Related]

  • 15. Muscle and external load contribution to knee joint contact loads during normal gait.
    Winby CR, Lloyd DG, Besier TF, Kirk TB.
    J Biomech; 2009 Oct 16; 42(14):2294-300. PubMed ID: 19647257
    [Abstract] [Full Text] [Related]

  • 16. A subject-specific musculoskeletal modeling framework to predict in vivo mechanics of total knee arthroplasty.
    Marra MA, Vanheule V, Fluit R, Koopman BH, Rasmussen J, Verdonschot N, Andersen MS.
    J Biomech Eng; 2015 Feb 01; 137(2):020904. PubMed ID: 25429519
    [Abstract] [Full Text] [Related]

  • 17. Selective contribution of each hamstring muscle to anterior cruciate ligament protection and tibiofemoral joint stability in leg-extension exercise: a simulation study.
    Biscarini A, Botti FM, Pettorossi VE.
    Eur J Appl Physiol; 2013 Sep 01; 113(9):2263-73. PubMed ID: 23670482
    [Abstract] [Full Text] [Related]

  • 18. A custom musculoskeletal model for estimation of medial and lateral tibiofemoral contact forces during tasks with high knee and hip flexions.
    Bedo BLS, Catelli DS, Lamontagne M, Santiago PRP.
    Comput Methods Biomech Biomed Engin; 2020 Aug 01; 23(10):658-663. PubMed ID: 32393120
    [Abstract] [Full Text] [Related]

  • 19. Contributions to the understanding of gait control.
    Simonsen EB.
    Dan Med J; 2014 Apr 01; 61(4):B4823. PubMed ID: 24814597
    [Abstract] [Full Text] [Related]

  • 20. Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant.
    Kim HJ, Fernandez JW, Akbarshahi M, Walter JP, Fregly BJ, Pandy MG.
    J Orthop Res; 2009 Oct 01; 27(10):1326-31. PubMed ID: 19396858
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.