These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Falls event detection using triaxial accelerometry and barometric pressure measurement. Bianchi F, Redmond SJ, Narayanan MR, Cerutti S, Celler BG, Lovell NH. Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():6111-4. PubMed ID: 19965262 [Abstract] [Full Text] [Related]
23. Activity Classification Using Mobile Phone based Motion Sensing and Distributed Computing. Artetxe A, Beristain A, Kabongo L. Stud Health Technol Inform; 2014; 207():1-10. PubMed ID: 25488205 [Abstract] [Full Text] [Related]
24. Varying behavior of different window sizes on the classification of static and dynamic physical activities from a single accelerometer. Fida B, Bernabucci I, Bibbo D, Conforto S, Schmid M. Med Eng Phys; 2015 Jul; 37(7):705-11. PubMed ID: 25983067 [Abstract] [Full Text] [Related]
25. Evaluation of accelerometer based multi-sensor versus single-sensor activity recognition systems. Gao L, Bourke AK, Nelson J. Med Eng Phys; 2014 Jun; 36(6):779-85. PubMed ID: 24636448 [Abstract] [Full Text] [Related]
27. Multimodal sensor-based fall detection within the domestic environment of elderly people. Feldwieser F, Gietzelt M, Goevercin M, Marschollek M, Meis M, Winkelbach S, Wolf KH, Spehr J, Steinhagen-Thiessen E. Z Gerontol Geriatr; 2014 Dec; 47(8):661-5. PubMed ID: 25112402 [Abstract] [Full Text] [Related]
33. Activity recognition in planetary navigation field tests using classification algorithms applied to accelerometer data. Song W, Ade C, Broxterman R, Barstow T, Nelson T, Warren S. Annu Int Conf IEEE Eng Med Biol Soc; 2012 Dec; 2012():1586-9. PubMed ID: 23366208 [Abstract] [Full Text] [Related]
35. Recommendations for collecting and processing accelerometry data in elderly people. Ortlieb S, Gorzelniak L, Dias A, Schulz H, Horsch A. Stud Health Technol Inform; 2013 Dec; 192():1175. PubMed ID: 23920949 [Abstract] [Full Text] [Related]
37. Ability of RT3 accelerometer cut points to detect physical activity intensity in ambulatory children with cerebral palsy. Ryan J, Walsh M, Gormley J. Adapt Phys Activ Q; 2014 Oct; 31(4):310-24. PubMed ID: 25211479 [Abstract] [Full Text] [Related]
39. Introducing a modular activity monitoring system. Reiss A, Stricker D. Annu Int Conf IEEE Eng Med Biol Soc; 2011 Oct; 2011():5621-4. PubMed ID: 22255614 [Abstract] [Full Text] [Related]
40. Comparison of physical behavior estimates from three different thigh-worn accelerometers brands: a proof-of-concept for the Prospective Physical Activity, Sitting, and Sleep consortium (ProPASS). Crowley P, Skotte J, Stamatakis E, Hamer M, Aadahl M, Stevens ML, Rangul V, Mork PJ, Holtermann A. Int J Behav Nutr Phys Act; 2019 Aug 16; 16(1):65. PubMed ID: 31419998 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]