These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


254 related items for PubMed ID: 24394776

  • 21. BOTRYTIS-INDUCED KINASE1, a plasma membrane-localized receptor-like protein kinase, is a negative regulator of phosphate homeostasis in Arabidopsis thaliana.
    Zhang H, Huang L, Hong Y, Song F.
    BMC Plant Biol; 2016 Jul 07; 16(1):152. PubMed ID: 27389008
    [Abstract] [Full Text] [Related]

  • 22. SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation.
    Miura K, Lee J, Gong Q, Ma S, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM.
    Plant Physiol; 2011 Feb 07; 155(2):1000-12. PubMed ID: 21156857
    [Abstract] [Full Text] [Related]

  • 23. Transcriptional regulation of phosphate acquisition by higher plants.
    Jain A, Nagarajan VK, Raghothama KG.
    Cell Mol Life Sci; 2012 Oct 07; 69(19):3207-24. PubMed ID: 22899310
    [Abstract] [Full Text] [Related]

  • 24. A major root-associated acid phosphatase in Arabidopsis, AtPAP10, is regulated by both local and systemic signals under phosphate starvation.
    Zhang Y, Wang X, Lu S, Liu D.
    J Exp Bot; 2014 Dec 07; 65(22):6577-88. PubMed ID: 25246445
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Overexpressing the ANR1 MADS-box gene in transgenic plants provides new insights into its role in the nitrate regulation of root development.
    Gan Y, Bernreiter A, Filleur S, Abram B, Forde BG.
    Plant Cell Physiol; 2012 Jun 07; 53(6):1003-16. PubMed ID: 22523192
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. A central regulatory system largely controls transcriptional activation and repression responses to phosphate starvation in Arabidopsis.
    Bustos R, Castrillo G, Linhares F, Puga MI, Rubio V, Pérez-Pérez J, Solano R, Leyva A, Paz-Ares J.
    PLoS Genet; 2010 Sep 09; 6(9):e1001102. PubMed ID: 20838596
    [Abstract] [Full Text] [Related]

  • 30. Arabidopsis ROOT HAIR DEFECTIVE3 is involved in nitrogen starvation-induced anthocyanin accumulation.
    Wang J, Wang Y, Yang J, Ma C, Zhang Y, Ge T, Qi Z, Kang Y.
    J Integr Plant Biol; 2015 Aug 09; 57(8):708-21. PubMed ID: 25494721
    [Abstract] [Full Text] [Related]

  • 31. Coordination between zinc and phosphate homeostasis involves the transcription factor PHR1, the phosphate exporter PHO1, and its homologue PHO1;H3 in Arabidopsis.
    Khan GA, Bouraine S, Wege S, Li Y, de Carbonnel M, Berthomieu P, Poirier Y, Rouached H.
    J Exp Bot; 2014 Mar 09; 65(3):871-84. PubMed ID: 24420568
    [Abstract] [Full Text] [Related]

  • 32. Regulation of miR399f transcription by AtMYB2 affects phosphate starvation responses in Arabidopsis.
    Baek D, Kim MC, Chun HJ, Kang S, Park HC, Shin G, Park J, Shen M, Hong H, Kim WY, Kim DH, Lee SY, Bressan RA, Bohnert HJ, Yun DJ.
    Plant Physiol; 2013 Jan 09; 161(1):362-73. PubMed ID: 23154535
    [Abstract] [Full Text] [Related]

  • 33. A proposed role for selective autophagy in regulating auxin-dependent lateral root development under phosphate starvation in Arabidopsis.
    Sankaranarayanan S, Samuel MA.
    Plant Signal Behav; 2015 Jan 09; 10(3):e989749. PubMed ID: 25831136
    [Abstract] [Full Text] [Related]

  • 34. The Arabidopsis purple acid phosphatase AtPAP10 is predominantly associated with the root surface and plays an important role in plant tolerance to phosphate limitation.
    Wang L, Li Z, Qian W, Guo W, Gao X, Huang L, Wang H, Zhu H, Wu JW, Wang D, Liu D.
    Plant Physiol; 2011 Nov 09; 157(3):1283-99. PubMed ID: 21941000
    [Abstract] [Full Text] [Related]

  • 35. Genetic and genomic evidence that sucrose is a global regulator of plant responses to phosphate starvation in Arabidopsis.
    Lei M, Liu Y, Zhang B, Zhao Y, Wang X, Zhou Y, Raghothama KG, Liu D.
    Plant Physiol; 2011 Jul 09; 156(3):1116-30. PubMed ID: 21346170
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. A Brassica napus PHT1 phosphate transporter, BnPht1;4, promotes phosphate uptake and affects roots architecture of transgenic Arabidopsis.
    Ren F, Zhao CZ, Liu CS, Huang KL, Guo QQ, Chang LL, Xiong H, Li XB.
    Plant Mol Biol; 2014 Dec 09; 86(6):595-607. PubMed ID: 25194430
    [Abstract] [Full Text] [Related]

  • 38. Phosphate availability alters lateral root development in Arabidopsis by modulating auxin sensitivity via a mechanism involving the TIR1 auxin receptor.
    Pérez-Torres CA, López-Bucio J, Cruz-Ramírez A, Ibarra-Laclette E, Dharmasiri S, Estelle M, Herrera-Estrella L.
    Plant Cell; 2008 Dec 09; 20(12):3258-72. PubMed ID: 19106375
    [Abstract] [Full Text] [Related]

  • 39. The THO/TREX Complex Active in miRNA Biogenesis Negatively Regulates Root-Associated Acid Phosphatase Activity Induced by Phosphate Starvation.
    Tao S, Zhang Y, Wang X, Xu L, Fang X, Lu ZJ, Liu D.
    Plant Physiol; 2016 Aug 09; 171(4):2841-53. PubMed ID: 27329222
    [Abstract] [Full Text] [Related]

  • 40. Modulation of the Phosphate-Deficient Responses by MicroRNA156 and its Targeted SQUAMOSA PROMOTER BINDING PROTEIN-LIKE 3 in Arabidopsis.
    Lei KJ, Lin YM, Ren J, Bai L, Miao YC, An GY, Song CP.
    Plant Cell Physiol; 2016 Jan 09; 57(1):192-203. PubMed ID: 26647245
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.