These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


295 related items for PubMed ID: 24395428

  • 1. Axoplasmic reticulum Ca(2+) release causes secondary degeneration of spinal axons.
    Stirling DP, Cummins K, Wayne Chen SR, Stys P.
    Ann Neurol; 2014 Feb; 75(2):220-9. PubMed ID: 24395428
    [Abstract] [Full Text] [Related]

  • 2. Intracellular calcium release through IP3R or RyR contributes to secondary axonal degeneration.
    Orem BC, Pelisch N, Williams J, Nally JM, Stirling DP.
    Neurobiol Dis; 2017 Oct; 106():235-243. PubMed ID: 28709993
    [Abstract] [Full Text] [Related]

  • 3. Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury.
    Stirling DP, Cummins K, Mishra M, Teo W, Yong VW, Stys P.
    Brain; 2014 Mar; 137(Pt 3):707-23. PubMed ID: 24369381
    [Abstract] [Full Text] [Related]

  • 4. Inhibiting store-operated calcium entry attenuates white matter secondary degeneration following SCI.
    Orem BC, Partain SB, Stirling DP.
    Neurobiol Dis; 2020 Mar; 136():104718. PubMed ID: 31846736
    [Abstract] [Full Text] [Related]

  • 5. The toll-like receptor 2 agonist Pam3CSK4 is neuroprotective after spinal cord injury.
    Stivers NS, Pelisch N, Orem BC, Williams J, Nally JM, Stirling DP.
    Exp Neurol; 2017 Aug; 294():1-11. PubMed ID: 28445714
    [Abstract] [Full Text] [Related]

  • 6. IP3R-mediated intra-axonal Ca2+ release contributes to secondary axonal degeneration following contusive spinal cord injury.
    Orem BC, Rajaee A, Stirling DP.
    Neurobiol Dis; 2020 Dec; 146():105123. PubMed ID: 33011333
    [Abstract] [Full Text] [Related]

  • 7. An ex vivo laser-induced spinal cord injury model to assess mechanisms of axonal degeneration in real-time.
    Okada SL, Stivers NS, Stys PK, Stirling DP.
    J Vis Exp; 2014 Nov 25; (93):e52173. PubMed ID: 25490396
    [Abstract] [Full Text] [Related]

  • 8. Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration.
    Collyer E, Catenaccio A, Lemaitre D, Diaz P, Valenzuela V, Bronfman F, Court FA.
    Exp Neurol; 2014 Nov 25; 261():451-61. PubMed ID: 25079366
    [Abstract] [Full Text] [Related]

  • 9. The contribution of activated phagocytes and myelin degeneration to axonal retraction/dieback following spinal cord injury.
    McPhail LT, Stirling DP, Tetzlaff W, Kwiecien JM, Ramer MS.
    Eur J Neurosci; 2004 Oct 25; 20(8):1984-94. PubMed ID: 15450077
    [Abstract] [Full Text] [Related]

  • 10. Inhibiting Calcium Release from Ryanodine Receptors Protects Axons after Spinal Cord Injury.
    Orem BC, Rajaee A, Stirling DP.
    J Neurotrauma; 2022 Feb 25; 39(3-4):311-319. PubMed ID: 34913747
    [Abstract] [Full Text] [Related]

  • 11. Mechanisms of axonal injury: internodal nanocomplexes and calcium deregulation.
    Stirling DP, Stys PK.
    Trends Mol Med; 2010 Apr 25; 16(4):160-70. PubMed ID: 20207196
    [Abstract] [Full Text] [Related]

  • 12. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord.
    Kerschensteiner M, Schwab ME, Lichtman JW, Misgeld T.
    Nat Med; 2005 May 25; 11(5):572-7. PubMed ID: 15821747
    [Abstract] [Full Text] [Related]

  • 13. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments.
    del Mar N, von Buttlar X, Yu AS, Guley NH, Reiner A, Honig MG.
    Exp Neurol; 2015 Sep 25; 271():53-71. PubMed ID: 25957630
    [Abstract] [Full Text] [Related]

  • 14. Evaluation of Injured Axons Using Two-Photon Excited Fluorescence Microscopy after Spinal Cord Contusion Injury in YFP-H Line Mice.
    Horiuchi H, Oshima Y, Ogata T, Morino T, Matsuda S, Miura H, Imamura T.
    Int J Mol Sci; 2015 Jul 13; 16(7):15785-99. PubMed ID: 26184175
    [Abstract] [Full Text] [Related]

  • 15. Emergence of highly neurofilament-immunoreactive zipper-like axon segments at the transection site in scalpel-cordotomized adult rats.
    Nishio T, Kawaguchi S, Fujiwara H.
    Neuroscience; 2008 Jul 31; 155(1):90-103. PubMed ID: 18571867
    [Abstract] [Full Text] [Related]

  • 16. Glutamate receptors on myelinated spinal cord axons: I. GluR6 kainate receptors.
    Ouardouz M, Coderre E, Basak A, Chen A, Zamponi GW, Hameed S, Rehak R, Yin X, Trapp BD, Stys PK.
    Ann Neurol; 2009 Feb 31; 65(2):151-9. PubMed ID: 19224535
    [Abstract] [Full Text] [Related]

  • 17. Extensive structural remodeling of the injured spinal cord revealed by phosphorylated MAP1B in sprouting axons and degenerating neurons.
    Soares S, Barnat M, Salim C, von Boxberg Y, Ravaille-Veron M, Nothias F.
    Eur J Neurosci; 2007 Sep 31; 26(6):1446-61. PubMed ID: 17880387
    [Abstract] [Full Text] [Related]

  • 18. Mechanisms of axonal spheroid formation in central nervous system Wallerian degeneration.
    Beirowski B, Nógrádi A, Babetto E, Garcia-Alias G, Coleman MP.
    J Neuropathol Exp Neurol; 2010 May 31; 69(5):455-72. PubMed ID: 20418780
    [Abstract] [Full Text] [Related]

  • 19. General mechanisms of axonal damage and its prevention.
    Stys PK.
    J Neurol Sci; 2005 Jun 15; 233(1-2):3-13. PubMed ID: 15899499
    [Abstract] [Full Text] [Related]

  • 20. A recoverable state of axon injury persists for hours after spinal cord contusion in vivo.
    Williams PR, Marincu BN, Sorbara CD, Mahler CF, Schumacher AM, Griesbeck O, Kerschensteiner M, Misgeld T.
    Nat Commun; 2014 Dec 16; 5():5683. PubMed ID: 25511170
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 15.