These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
253 related items for PubMed ID: 24398186
41. Medium optimization by response surface methodology for poly-gamma-glutamic acid production using dairy manure as the basis of a solid substrate. Xiong C, Shouwen C, Ming S, Ziniu Y. Appl Microbiol Biotechnol; 2005 Dec; 69(4):390-6. PubMed ID: 15846485 [Abstract] [Full Text] [Related]
42. Production of L(+)-lactic acid from glucose and starch by immobilized cells of Rhizopus oryzae in a rotating fibrous bed bioreactor. Tay A, Yang ST. Biotechnol Bioeng; 2002 Oct 05; 80(1):1-12. PubMed ID: 12209781 [Abstract] [Full Text] [Related]
43. Bioconversion of agricultural waste into poly-γ-glutamic acid in solid-state bioreactors at different scales. Fang J, Huan C, Liu Y, Xu L, Yan Z. Waste Manag; 2020 Feb 01; 102():939-948. PubMed ID: 31855694 [Abstract] [Full Text] [Related]
44. Efficient molasses utilization for low-molecular-weight poly-γ-glutamic acid production using a novel Bacillus subtilis stain. Li J, Chen S, Fu J, Xie J, Ju J, Yu B, Wang L. Microb Cell Fact; 2022 Jul 16; 21(1):140. PubMed ID: 35842664 [Abstract] [Full Text] [Related]
45. Improvement of Bacillus subtilis for poly-γ-glutamic acid production by genome shuffling. Zeng W, Chen G, Wu H, Wang J, Liu Y, Guo Y, Liang Z. Microb Biotechnol; 2016 Nov 16; 9(6):824-833. PubMed ID: 27562078 [Abstract] [Full Text] [Related]
46. Improved poly-gamma-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) in Bacillus subtilis. Su Y, Li X, Liu Q, Hou Z, Zhu X, Guo X, Ling P. Bioresour Technol; 2010 Jun 16; 101(12):4733-6. PubMed ID: 20171882 [Abstract] [Full Text] [Related]
47. Production of poly-gamma-glutamic acid by Bacillus subtilis and Bacillus licheniformis with different growth media. Kedia G, Hill D, Hill R, Radecka I. J Nanosci Nanotechnol; 2010 Sep 16; 10(9):5926-34. PubMed ID: 21133130 [Abstract] [Full Text] [Related]
48. Enhanced production of poly (gamma-glutamic acid) from Bacillus licheniformis NCIM 2324 in solid state fermentation. Bajaj IB, Lele SS, Singhal RS. J Ind Microbiol Biotechnol; 2008 Dec 16; 35(12):1581-6. PubMed ID: 18654808 [Abstract] [Full Text] [Related]
49. Poly-γ-glutamic acid production by Bacillus subtilis 168 using glucose as the sole carbon source: A metabolomic analysis. Halmschlag B, Putri SP, Fukusaki E, Blank LM. J Biosci Bioeng; 2020 Sep 16; 130(3):272-282. PubMed ID: 32546403 [Abstract] [Full Text] [Related]
50. Simultaneous and selective production of levan and poly(gamma-glutamic acid) by Bacillus subtilis. Shih IL, Yu YT. Biotechnol Lett; 2005 Jan 16; 27(2):103-6. PubMed ID: 15703872 [Abstract] [Full Text] [Related]
51. Butyric acid production from sugarcane bagasse hydrolysate by Clostridium tyrobutyricum immobilized in a fibrous-bed bioreactor. Wei D, Liu X, Yang ST. Bioresour Technol; 2013 Feb 16; 129():553-60. PubMed ID: 23270719 [Abstract] [Full Text] [Related]
52. The influence of process parameters in production of lipopeptide iturin A using aerated packed bed bioreactors in solid-state fermentation. Piedrahíta-Aguirre CA, Bastos RG, Carvalho AL, Monte Alegre R. Bioprocess Biosyst Eng; 2014 Aug 16; 37(8):1569-76. PubMed ID: 24504698 [Abstract] [Full Text] [Related]
53. Enhanced Poly-γ-Glutamic Acid Production by a Newly Isolated Bacillus halotolerans F29. Sun X, Cai Y, Wang D. J Microbiol; 2024 Aug 16; 62(8):695-707. PubMed ID: 39164498 [Abstract] [Full Text] [Related]
54. L-lactic acid production by Bacillus subtilis MUR1. Gao T, Wong Y, Ng C, Ho K. Bioresour Technol; 2012 Oct 16; 121():105-10. PubMed ID: 22858473 [Abstract] [Full Text] [Related]
55. Enhanced Low Molecular Weight Poly-γ-Glutamic Acid Production in Recombinant Bacillus subtilis 1A751 with Zinc Ion. Jiang S, Fan L, Zhao M, Qiu Y, Zhao L. Appl Biochem Biotechnol; 2019 Oct 16; 189(2):411-423. PubMed ID: 31037584 [Abstract] [Full Text] [Related]
56. Physicochemical properties, production, and biological functionality of poly-γ-d-glutamic acid with constant molecular weight from halotolerant Bacillus sp. SJ-10. Lee JM, Kim JH, Kim KW, Lee BJ, Kim DG, Kim YO, Lee JH, Kong IS. Int J Biol Macromol; 2018 Mar 16; 108():598-607. PubMed ID: 29229248 [Abstract] [Full Text] [Related]
57. Enhancing the production of poly-γ-glutamate in Bacillus subtilis ZJS18 by the heat- and osmotic shock and its mechanism. Song Y, Zhang Y, He M, Liu H, Hu C, Yang L, Yu P. Prep Biochem Biotechnol; 2020 Mar 16; 50(10):1023-1030. PubMed ID: 32552438 [Abstract] [Full Text] [Related]
58. Enhanced propionic acid production from Jerusalem artichoke hydrolysate by immobilized Propionibacterium acidipropionici in a fibrous-bed bioreactor. Liang ZX, Li L, Li S, Cai YH, Yang ST, Wang JF. Bioprocess Biosyst Eng; 2012 Aug 16; 35(6):915-21. PubMed ID: 22228298 [Abstract] [Full Text] [Related]
59. Study on the mechanism of production of γ-PGA and nattokinase in Bacillus subtilis natto based on RNA-seq analysis. Li M, Zhang Z, Li S, Tian Z, Ma X. Microb Cell Fact; 2021 Apr 09; 20(1):83. PubMed ID: 33836770 [Abstract] [Full Text] [Related]
60. Chromosomal integration of a synthetic expression control sequence achieves poly-gamma-glutamate production in a Bacillus subtilis strain. Yeh CM, Wang JP, Lo SC, Chan WC, Lin MY. Biotechnol Prog; 2010 Apr 09; 26(4):1001-7. PubMed ID: 20564357 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]