These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
174 related items for PubMed ID: 24402840
21. (NEt(4))(2)[Fe(CN)(2)(CO)('S(3)')]: an iron thiolate complex modeling the [Fe(CN)(2)(CO)(S-Cys)(2)] site of [NiFe] hydrogenase centers. Sellmann D, Geipel F, Heinemann FW. Chemistry; 2002 Feb 15; 8(4):958-66. PubMed ID: 11857710 [Abstract] [Full Text] [Related]
22. A pyridinol acyl cofactor in the active site of [Fe]-hydrogenase evidenced by the reactivity of model complexes. Hu B, Chen D, Hu X. Chemistry; 2012 Sep 10; 18(37):11528-30. PubMed ID: 22887644 [Abstract] [Full Text] [Related]
23. Effect of cyanide ligands on the electronic structure of [FeFe] hydrogenase active-site model complexes with an azadithiolate cofactor. Erdem Ö, Stein M, Kaur-Ghumaan S, Reijerse EJ, Ott S, Lubitz W. Chemistry; 2013 Oct 18; 19(43):14566-72. PubMed ID: 24038239 [Abstract] [Full Text] [Related]
24. Synthetic and structural studies on L-cysteinyl group-containing diiron/triiron azadithiolates as active site models of [FeFe]-hydrogenases. Song LC, Yan J, Li YL, Wang DF, Hu QM. Inorg Chem; 2009 Dec 07; 48(23):11376-81. PubMed ID: 19860376 [Abstract] [Full Text] [Related]
25. Biosynthesis of the iron-guanylylpyridinol cofactor of [Fe]-hydrogenase in methanogenic archaea as elucidated by stable-isotope labeling. Schick M, Xie X, Ataka K, Kahnt J, Linne U, Shima S. J Am Chem Soc; 2012 Feb 15; 134(6):3271-80. PubMed ID: 22260087 [Abstract] [Full Text] [Related]
26. Synthesis, structures and electrochemical properties of nitro- and amino-functionalized diiron azadithiolates as active site models of Fe-only hydrogenases. Liu T, Wang M, Shi Z, Cui H, Dong W, Chen J, Akermark B, Sun L. Chemistry; 2004 Sep 20; 10(18):4474-9. PubMed ID: 15378625 [Abstract] [Full Text] [Related]
27. Active-site models for iron hydrogenases: reduction chemistry of dinuclear iron complexes. Aguirre de Carcer I, DiPasquale A, Rheingold AL, Heinekey DM. Inorg Chem; 2006 Oct 02; 45(20):8000-2. PubMed ID: 16999394 [Abstract] [Full Text] [Related]
28. Synthesis and structural characterization of the mono- and diphosphine-containing diiron propanedithiolate complexes related to [FeFe]-hydrogenases. Biomimetic H2 evolution catalyzed by (mu-PDT)Fe2(CO)4[(Ph2P)2N(n-Pr)]. Song LC, Li CG, Ge JH, Yang ZY, Wang HT, Zhang J, Hu QM. J Inorg Biochem; 2008 Nov 02; 102(11):1973-9. PubMed ID: 18783833 [Abstract] [Full Text] [Related]
29. Secondary coordination sphere interactions within the biomimetic iron azadithiolate complexes related to Fe-only hydrogenase: dynamic measure of electron density about the Fe sites. Liu YC, Tu LK, Yen TH, Lee GH, Yang ST, Chiang MH. Inorg Chem; 2010 Jul 19; 49(14):6409-20. PubMed ID: 20557034 [Abstract] [Full Text] [Related]
30. Six-coordinate and five-coordinate Fe(II)(CN)(2)(CO)(x) thiolate complexes (x = 1, 2): synthetic advances for iron sites of [NiFe] hydrogenases. Liaw WF, Lee JH, Gau HB, Chen CH, Jung SJ, Hung CH, Chen WY, Hu CH, Lee GH. J Am Chem Soc; 2002 Feb 27; 124(8):1680-8. PubMed ID: 11853444 [Abstract] [Full Text] [Related]
31. Scaffold-Based Functional Models of [Fe]-Hydrogenase (Hmd): Building the Bridge between Biological Structure and Molecular Function. Kerns SA, Rose MJ. Acc Chem Res; 2020 Aug 18; 53(8):1637-1647. PubMed ID: 32786339 [Abstract] [Full Text] [Related]
32. Di/mono-nuclear iron(I)/(II) complexes as functional models for the 2Fe2S subunit and distal Fe moiety of the active site of [FeFe] hydrogenases: protonations, molecular structures and electrochemical properties. Gao S, Fan J, Sun S, Song F, Peng X, Duan Q, Jiang D, Liang Q. Dalton Trans; 2012 Oct 21; 41(39):12064-74. PubMed ID: 22911248 [Abstract] [Full Text] [Related]
33. Synthetic and structural studies on new diiron azadithiolate (ADT)-type model compounds for active site of [FeFe]hydrogenases. Song LC, Xie ZJ, Liu XF, Ming JB, Ge JH, Zhang XG, Yan TY, Gao P. Dalton Trans; 2011 Jan 28; 40(4):837-46. PubMed ID: 21152555 [Abstract] [Full Text] [Related]
34. Modeling [Fe-Fe] hydrogenase: evidence for bridging carbonyl and distal iron coordination vacancy in an electrocatalytically competent proton reduction by an iron thiolate assembly that operates through Fe(0)-Fe(II) levels. Cheah MH, Tard C, Borg SJ, Liu X, Ibrahim SK, Pickett CJ, Best SP. J Am Chem Soc; 2007 Sep 12; 129(36):11085-92. PubMed ID: 17705475 [Abstract] [Full Text] [Related]
35. Facilitated hydride binding in an Fe-Fe hydrogenase active-site biomimic revealed by X-ray absorption spectroscopy and DFT calculations. Löscher S, Schwartz L, Stein M, Ott S, Haumann M. Inorg Chem; 2007 Dec 24; 46(26):11094-105. PubMed ID: 18041829 [Abstract] [Full Text] [Related]
36. Diiron dithiolate complexes containing intra-ligand NH ... S hydrogen bonds: [FeFe] hydrogenase active site models for the electrochemical proton reduction of HOAc with low overpotential. Yu Z, Wang M, Li P, Dong W, Wang F, Sun L. Dalton Trans; 2008 May 14; (18):2400-6. PubMed ID: 18461194 [Abstract] [Full Text] [Related]
37. A new cumulene diiron complex related to the active site of Fe-only hydrogenases and its phosphine substituted derivatives: synthesis, electrochemistry and structural characterization. Wen N, Xu F, Feng Y, Du S. J Inorg Biochem; 2011 Sep 14; 105(9):1123-30. PubMed ID: 21704584 [Abstract] [Full Text] [Related]
38. De novo design of synthetic di-iron(I) complexes as structural models of the reduced form of iron-iron hydrogenase. Tye JW, Darensbourg MY, Hall MB. Inorg Chem; 2006 Feb 20; 45(4):1552-9. PubMed ID: 16471966 [Abstract] [Full Text] [Related]
39. Fluorophenyl-substituted Fe-only hydrogenases active site ADT models: different electrocatalytic process for proton reduction in HOAc and HBF4/Et2O. Wang WG, Wang HY, Si G, Tung CH, Wu LZ. Dalton Trans; 2009 Apr 21; (15):2712-20. PubMed ID: 19333494 [Abstract] [Full Text] [Related]
40. Computational definition of a mixed valent Fe(II)Fe(I) model of the [FeFe]hydrogenase active site resting state. Thomas CM, Darensbourg MY, Hall MB. J Inorg Biochem; 2007 Nov 21; 101(11-12):1752-7. PubMed ID: 17698202 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]