These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


129 related items for PubMed ID: 24409685

  • 1. [Advances in microbial production of 5-aminolevulinic acid].
    Kang Z, Zhang J, Yang S, Du G, Chen J.
    Sheng Wu Gong Cheng Xue Bao; 2013 Sep; 29(9):1214-22. PubMed ID: 24409685
    [Abstract] [Full Text] [Related]

  • 2. Metabolic engineering to improve 5-aminolevulinic acid production.
    Kang Z, Wang Y, Wang Q, Qi Q.
    Bioeng Bugs; 2011 Sep; 2(6):342-5. PubMed ID: 22008939
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. 5-Aminolevulinic acid production from inexpensive glucose by engineering the C4 pathway in Escherichia coli.
    Ding W, Weng H, Du G, Chen J, Kang Z.
    J Ind Microbiol Biotechnol; 2017 Aug; 44(8):1127-1135. PubMed ID: 28382525
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Strain engineering for high-level 5-aminolevulinic acid production in Escherichia coli.
    Miscevic D, Mao JY, Kefale T, Abedi D, Moo-Young M, Perry Chou C.
    Biotechnol Bioeng; 2021 Jan; 118(1):30-42. PubMed ID: 32860420
    [Abstract] [Full Text] [Related]

  • 9. Quantification, regulation and production of 5-aminolevulinic acid by green fluorescent protein in recombinant Escherichia coli.
    Tan SI, You SC, Shih IT, Ng IS.
    J Biosci Bioeng; 2020 Apr; 129(4):387-394. PubMed ID: 31678067
    [Abstract] [Full Text] [Related]

  • 10. Recent advances in microbial production of δ-aminolevulinic acid and vitamin B12.
    Kang Z, Zhang J, Zhou J, Qi Q, Du G, Chen J.
    Biotechnol Adv; 2012 Apr; 30(6):1533-42. PubMed ID: 22537876
    [Abstract] [Full Text] [Related]

  • 11. [Deficiency of succinic dehydrogenase or succinyl-coA synthetase enhances the production of 5-aminolevulinic acid in recombinant Escherichia coli].
    Pu W, Chen J, Sun C, Chen N, Sun J, Zheng P, Ma Y.
    Sheng Wu Gong Cheng Xue Bao; 2013 Oct; 29(10):1494-503. PubMed ID: 24432664
    [Abstract] [Full Text] [Related]

  • 12. Biosynthesis of intracellular 5-aminolevulinic acid by a newly identified halotolerant Rhodobacter sphaeroides.
    Tangprasittipap A, Prasertsan P, Choorit W, Sasaki K.
    Biotechnol Lett; 2007 May; 29(5):773-8. PubMed ID: 17245554
    [Abstract] [Full Text] [Related]

  • 13. Biosynthesis, biotechnological production and applications of 5-aminolevulinic acid.
    Sasaki K, Watanabe M, Tanaka T, Tanaka T.
    Appl Microbiol Biotechnol; 2002 Jan; 58(1):23-9. PubMed ID: 11831472
    [Abstract] [Full Text] [Related]

  • 14. Production of uroporphyrinogen III, which is the common precursor of all tetrapyrrole cofactors, from 5-aminolevulinic acid by Escherichia coli expressing thermostable enzymes.
    Hibino A, Petri R, Büchs J, Ohtake H.
    Appl Microbiol Biotechnol; 2013 Aug; 97(16):7337-44. PubMed ID: 23604563
    [Abstract] [Full Text] [Related]

  • 15. Optimization of Influencing Factors on Biomass Accumulation and 5-Aminolevulinic Acid (ALA) Yield in Rhodobacter sphaeroides Wastewater Treatment.
    Liu S, Li X, Zhang G, Zhang J.
    J Microbiol Biotechnol; 2015 Nov; 25(11):1920-7. PubMed ID: 26139613
    [Abstract] [Full Text] [Related]

  • 16. Recent advances in production of 5-aminolevulinic acid using biological strategies.
    Kang Z, Ding W, Gong X, Liu Q, Du G, Chen J.
    World J Microbiol Biotechnol; 2017 Oct 16; 33(11):200. PubMed ID: 29038905
    [Abstract] [Full Text] [Related]

  • 17. Constitutive expression of RyhB regulates the heme biosynthesis pathway and increases the 5-aminolevulinic acid accumulation in Escherichia coli.
    Li F, Wang Y, Gong K, Wang Q, Liang Q, Qi Q.
    FEMS Microbiol Lett; 2014 Jan 16; 350(2):209-15. PubMed ID: 24188714
    [Abstract] [Full Text] [Related]

  • 18. Precise flux redistribution to glyoxylate cycle for 5-aminolevulinic acid production in Escherichia coli.
    Noh MH, Lim HG, Park S, Seo SW, Jung GY.
    Metab Eng; 2017 Sep 16; 43(Pt A):1-8. PubMed ID: 28739388
    [Abstract] [Full Text] [Related]

  • 19. Construction of the Rhodobacter sphaeroides strain overproducing 5-aminolevulinic acid by insertion of endogenous promoter.
    Kojima T, Masuda S.
    J Gen Appl Microbiol; 2024 Mar 07; 69(5):270-277. PubMed ID: 37482422
    [Abstract] [Full Text] [Related]

  • 20. Construction of 5-Aminolevulinic Acid Microbial Cell Factories through Identification of Novel Synthases and Metabolic Pathway Screens and Transporters.
    Wang W, Xiang Y, Yin G, Hu S, Cheng J, Chen J, Du G, Kang Z, Wang Y.
    J Agric Food Chem; 2024 Apr 10; 72(14):8006-8017. PubMed ID: 38554273
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.