These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


123 related items for PubMed ID: 24409999

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Genome editing using artificial site-specific nucleases in zebrafish.
    Hisano Y, Ota S, Kawahara A.
    Dev Growth Differ; 2014 Jan; 56(1):26-33. PubMed ID: 24117409
    [Abstract] [Full Text] [Related]

  • 4. Gene targeting technologies in rats: zinc finger nucleases, transcription activator-like effector nucleases, and clustered regularly interspaced short palindromic repeats.
    Mashimo T.
    Dev Growth Differ; 2014 Jan; 56(1):46-52. PubMed ID: 24372523
    [Abstract] [Full Text] [Related]

  • 5. The application of transcription activator-like effector nucleases for genome editing in C. elegans.
    Yi P, Li W, Ou G.
    Methods; 2014 Aug 01; 68(3):389-96. PubMed ID: 24780522
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Engineering the Caenorhabditis elegans genome with CRISPR/Cas9.
    Waaijers S, Boxem M.
    Methods; 2014 Aug 01; 68(3):381-8. PubMed ID: 24685391
    [Abstract] [Full Text] [Related]

  • 9. Design, evaluation, and screening methods for efficient targeted mutagenesis with transcription activator-like effector nucleases in medaka.
    Ansai S, Inohaya K, Yoshiura Y, Schartl M, Uemura N, Takahashi R, Kinoshita M.
    Dev Growth Differ; 2014 Jan 01; 56(1):98-107. PubMed ID: 24286287
    [Abstract] [Full Text] [Related]

  • 10. CRISPR-Based Methods for Caenorhabditis elegans Genome Engineering.
    Dickinson DJ, Goldstein B.
    Genetics; 2016 Mar 01; 202(3):885-901. PubMed ID: 26953268
    [Abstract] [Full Text] [Related]

  • 11. Conditional knockouts generated by engineered CRISPR-Cas9 endonuclease reveal the roles of coronin in C. elegans neural development.
    Shen Z, Zhang X, Chai Y, Zhu Z, Yi P, Feng G, Li W, Ou G.
    Dev Cell; 2014 Sep 08; 30(5):625-36. PubMed ID: 25155554
    [Abstract] [Full Text] [Related]

  • 12. Genome Editing in C. elegans and Other Nematode Species.
    Sugi T.
    Int J Mol Sci; 2016 Feb 26; 17(3):295. PubMed ID: 26927083
    [Abstract] [Full Text] [Related]

  • 13. Nuclease-mediated genome editing: At the front-line of functional genomics technology.
    Sakuma T, Woltjen K.
    Dev Growth Differ; 2014 Jan 26; 56(1):2-13. PubMed ID: 24387662
    [Abstract] [Full Text] [Related]

  • 14. Genomic editing opens new avenues for zebrafish as a model for neurodegeneration.
    Schmid B, Haass C.
    J Neurochem; 2013 Nov 26; 127(4):461-70. PubMed ID: 24117801
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16. Targeted mutagenesis in Zea mays using TALENs and the CRISPR/Cas system.
    Liang Z, Zhang K, Chen K, Gao C.
    J Genet Genomics; 2014 Feb 20; 41(2):63-8. PubMed ID: 24576457
    [Abstract] [Full Text] [Related]

  • 17. Systematic evaluation of C. elegans lincRNAs with CRISPR knockout mutants.
    Wei S, Chen H, Dzakah EE, Yu B, Wang X, Fu T, Li J, Liu L, Fang S, Liu W, Shan G.
    Genome Biol; 2019 Jan 08; 20(1):7. PubMed ID: 30621757
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Genome engineering by transgene-instructed gene conversion in C. elegans.
    Robert VJ, Bessereau JL.
    Methods Cell Biol; 2011 Jan 08; 106():65-88. PubMed ID: 22118274
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.