These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


78 related items for PubMed ID: 24410772

  • 1. Comprehensive analysis of genes involved in the oxidative stress tolerance using yeast heterozygous deletion collection.
    Okada N, Ogawa J, Shima J.
    FEMS Yeast Res; 2014 May; 14(3):425-34. PubMed ID: 24410772
    [Abstract] [Full Text] [Related]

  • 2. Possible roles of vacuolar H+-ATPase and mitochondrial function in tolerance to air-drying stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.
    Shima J, Ando A, Takagi H.
    Yeast; 2008 Mar; 25(3):179-90. PubMed ID: 18224659
    [Abstract] [Full Text] [Related]

  • 3. Identification and classification of genes required for tolerance to freeze-thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains.
    Ando A, Nakamura T, Murata Y, Takagi H, Shima J.
    FEMS Yeast Res; 2007 Mar; 7(2):244-53. PubMed ID: 16989656
    [Abstract] [Full Text] [Related]

  • 4. Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae.
    Ando A, Tanaka F, Murata Y, Takagi H, Shima J.
    FEMS Yeast Res; 2006 Mar; 6(2):249-67. PubMed ID: 16487347
    [Abstract] [Full Text] [Related]

  • 5. EOS1, whose deletion confers sensitivity to oxidative stress, is involved in N-glycosylation in Saccharomyces cerevisiae.
    Nakamura T, Ando A, Takagi H, Shima J.
    Biochem Biophys Res Commun; 2007 Feb 09; 353(2):293-8. PubMed ID: 17187761
    [Abstract] [Full Text] [Related]

  • 6. Genome-wide identification of genes involved in tolerance to various environmental stresses in Saccharomyces cerevisiae.
    Auesukaree C, Damnernsawad A, Kruatrachue M, Pokethitiyook P, Boonchird C, Kaneko Y, Harashima S.
    J Appl Genet; 2009 Feb 09; 50(3):301-10. PubMed ID: 19638689
    [Abstract] [Full Text] [Related]

  • 7. Overexpression of the YAP1, PDE2, and STB3 genes enhances the tolerance of yeast to oxidative stress induced by 7-chlorotetrazolo[5,1-c]benzo[1,2,4]triazine.
    Drobna E, Gazdag Z, Culakova H, Dzugasova V, Gbelska Y, Pesti M, Subik J.
    FEMS Yeast Res; 2012 Dec 09; 12(8):958-68. PubMed ID: 22909133
    [Abstract] [Full Text] [Related]

  • 8. Role of glutathione metabolism status in the definition of some cellular parameters and oxidative stress tolerance of Saccharomyces cerevisiae cells growing as biofilms.
    Gales G, Penninckx M, Block JC, Leroy P.
    FEMS Yeast Res; 2008 Aug 09; 8(5):667-75. PubMed ID: 18557947
    [Abstract] [Full Text] [Related]

  • 9. The high general stress resistance of the Saccharomyces cerevisiae fil1 adenylate cyclase mutant (Cyr1Lys1682) is only partially dependent on trehalose, Hsp104 and overexpression of Msn2/4-regulated genes.
    Versele M, Thevelein JM, Van Dijck P.
    Yeast; 2004 Jan 15; 21(1):75-86. PubMed ID: 14745784
    [Abstract] [Full Text] [Related]

  • 10. Transcriptome analysis of acetic-acid-treated yeast cells identifies a large set of genes whose overexpression or deletion enhances acetic acid tolerance.
    Lee Y, Nasution O, Choi E, Choi IG, Kim W, Choi W.
    Appl Microbiol Biotechnol; 2015 Aug 15; 99(15):6391-403. PubMed ID: 26062532
    [Abstract] [Full Text] [Related]

  • 11. Chemical-genetic approaches for exploring the mode of action of natural products.
    Lopez A, Parsons AB, Nislow C, Giaever G, Boone C.
    Prog Drug Res; 2008 Aug 15; 66():237, 239-71. PubMed ID: 18416308
    [Abstract] [Full Text] [Related]

  • 12. Tolerance to furfural-induced stress is associated with pentose phosphate pathway genes ZWF1, GND1, RPE1, and TKL1 in Saccharomyces cerevisiae.
    Gorsich SW, Dien BS, Nichols NN, Slininger PJ, Liu ZL, Skory CD.
    Appl Microbiol Biotechnol; 2006 Jul 15; 71(3):339-49. PubMed ID: 16222531
    [Abstract] [Full Text] [Related]

  • 13. Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance.
    Shima J, Takagi H.
    Biotechnol Appl Biochem; 2009 May 29; 53(Pt 3):155-64. PubMed ID: 19476439
    [Abstract] [Full Text] [Related]

  • 14. Identification of genes involved in the toxic response of Saccharomyces cerevisiae against iron and copper overload by parallel analysis of deletion mutants.
    Jo WJ, Loguinov A, Chang M, Wintz H, Nislow C, Arkin AP, Giaever G, Vulpe CD.
    Toxicol Sci; 2008 Jan 29; 101(1):140-51. PubMed ID: 17785683
    [Abstract] [Full Text] [Related]

  • 15. An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role.
    Nishimura A, Kotani T, Sasano Y, Takagi H.
    FEMS Yeast Res; 2010 Sep 29; 10(6):687-98. PubMed ID: 20550582
    [Abstract] [Full Text] [Related]

  • 16. Physiological basis of copper tolerance of Saccharomyces cerevisiae nonsense-mediated mRNA decay mutants.
    Wang X, Okonkwo O, Kebaara BW.
    Yeast; 2013 May 29; 30(5):179-90. PubMed ID: 23450501
    [Abstract] [Full Text] [Related]

  • 17. Proteomic insights into adaptive responses of Saccharomyces cerevisiae to the repeated vacuum fermentation.
    Cheng JS, Zhou X, Ding MZ, Yuan YJ.
    Appl Microbiol Biotechnol; 2009 Jul 29; 83(5):909-23. PubMed ID: 19488749
    [Abstract] [Full Text] [Related]

  • 18. Genomewide screen reveals a wide regulatory network for di/tripeptide utilization in Saccharomyces cerevisiae.
    Cai H, Kauffman S, Naider F, Becker JM.
    Genetics; 2006 Mar 29; 172(3):1459-76. PubMed ID: 16361226
    [Abstract] [Full Text] [Related]

  • 19. Insights into the mechanisms of toxicity and tolerance to the agricultural fungicide mancozeb in yeast, as suggested by a chemogenomic approach.
    Dias PJ, Teixeira MC, Telo JP, Sá-Correia I.
    OMICS; 2010 Apr 29; 14(2):211-27. PubMed ID: 20337531
    [Abstract] [Full Text] [Related]

  • 20. The genome-wide screening of yeast deletion mutants to identify the genes required for tolerance to ethanol and other alcohols.
    Fujita K, Matsuyama A, Kobayashi Y, Iwahashi H.
    FEMS Yeast Res; 2006 Aug 29; 6(5):744-50. PubMed ID: 16879425
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 4.