These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Mayer MT, Lin Y, Yuan G, Wang D. Acc Chem Res; 2013 Jul 16; 46(7):1558-66. PubMed ID: 23425045 [Abstract] [Full Text] [Related]
7. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Zou Z, Ye J, Sayama K, Arakawa H. Nature; 2001 Dec 06; 414(6864):625-7. PubMed ID: 11740556 [Abstract] [Full Text] [Related]
16. Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion--from semiconducting TiO2 to MOF/PCP photocatalysts. Horiuchi Y, Toyao T, Takeuchi M, Matsuoka M, Anpo M. Phys Chem Chem Phys; 2013 Aug 28; 15(32):13243-53. PubMed ID: 23760469 [Abstract] [Full Text] [Related]
17. Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Ran J, Zhang J, Yu J, Jaroniec M, Qiao SZ. Chem Soc Rev; 2014 Nov 21; 43(22):7787-812. PubMed ID: 24429542 [Abstract] [Full Text] [Related]
18. Molecular Catalysts Immobilized on Semiconductor Photosensitizers for Proton Reduction toward Visible-Light-Driven Overall Water Splitting. Morikawa T, Sato S, Sekizawa K, Arai T, Suzuki TM. ChemSusChem; 2019 May 08; 12(9):1807-1824. PubMed ID: 30963707 [Abstract] [Full Text] [Related]
19. Accumulative charge separation for solar fuels production: coupling light-induced single electron transfer to multielectron catalysis. Hammarström L. Acc Chem Res; 2015 Mar 17; 48(3):840-50. PubMed ID: 25675365 [Abstract] [Full Text] [Related]