These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
279 related items for PubMed ID: 24413972
21. Characterization and multiple applications of a highly thermostable and Ca²⁺-independent amylopullulanase of the extreme thermophile Geobacillus thermoleovorans. Nisha M, Satyanarayana T. Appl Biochem Biotechnol; 2014 Dec; 174(7):2594-615. PubMed ID: 25267353 [Abstract] [Full Text] [Related]
22. Functional characterization of a special thermophilic multifunctional amylase OPMA-N and its N-terminal domain. Li F, Zhu X, Li Y, Cao H, Zhang Y. Acta Biochim Biophys Sin (Shanghai); 2011 Apr; 43(4):324-34. PubMed ID: 21355000 [Abstract] [Full Text] [Related]
24. Extensive hydrolysis of raw rice starch by a chimeric α-amylase engineered with α-amylase (AmyP) and a starch-binding domain from Cryptococcus sp. S-2. Peng H, Li R, Li F, Zhai L, Zhang X, Xiao Y, Gao Y. Appl Microbiol Biotechnol; 2018 Jan; 102(2):743-750. PubMed ID: 29159586 [Abstract] [Full Text] [Related]
25. Raw-starch-digesting and thermostable alpha-amylase from the yeast Cryptococcus sp. S-2: purification, characterization, cloning and sequencing. Iefuji H, Chino M, Kato M, Iimura Y. Biochem J; 1996 Sep 15; 318 ( Pt 3)(Pt 3):989-96. PubMed ID: 8836148 [Abstract] [Full Text] [Related]
26. Characteristics of Raw Starch-Digesting α-Amylase of Streptomyces badius DB-1 with Transglycosylation Activity and Its Applications. Shivlata L, Satyanarayana T. Appl Biochem Biotechnol; 2017 Apr 15; 181(4):1283-1303. PubMed ID: 27787770 [Abstract] [Full Text] [Related]
27. Characteristics of a high maltose-forming, acid-stable, and Ca(2+)-independent α-amylase of the acidophilic Bacillus acidicola. Sharma A, Satyanarayana T. Appl Biochem Biotechnol; 2013 Dec 15; 171(8):2053-64. PubMed ID: 24022779 [Abstract] [Full Text] [Related]
28. Purification and characterization of a thermostable α-amylase produced by the fungus Paecilomyces variotii. Michelin M, Silva TM, Benassi VM, Peixoto-Nogueira SC, Moraes LA, Leão JM, Jorge JA, Terenzi HF, Polizeli Mde L. Carbohydr Res; 2010 Nov 02; 345(16):2348-53. PubMed ID: 20850111 [Abstract] [Full Text] [Related]
29. Expression and Biochemical Characterization of a Thermostable Branching Enzyme from Geobacillus thermoglucosidans. Ban X, Li C, Gu Z, Bao C, Qiu Y, Hong Y, Cheng L, Li Z. J Mol Microbiol Biotechnol; 2016 Nov 02; 26(5):303-11. PubMed ID: 27416069 [Abstract] [Full Text] [Related]
30. Studies on the production of alkaline α-amylase from Bacillus subtilis CB-18. Nwokoro O, Anthonia O. Acta Sci Pol Technol Aliment; 2015 Nov 02; 14(1):71-75. PubMed ID: 28068022 [Abstract] [Full Text] [Related]
31. Glucoamylase starch-binding domain of Aspergillus niger B1: molecular cloning and functional characterization. Paldi T, Levy I, Shoseyov O. Biochem J; 2003 Jun 15; 372(Pt 3):905-10. PubMed ID: 12646045 [Abstract] [Full Text] [Related]
32. Crystal structure of the polyextremophilic alpha-amylase AmyB from Halothermothrix orenii: details of a productive enzyme-substrate complex and an N domain with a role in binding raw starch. Tan TC, Mijts BN, Swaminathan K, Patel BK, Divne C. J Mol Biol; 2008 May 09; 378(4):852-70. PubMed ID: 18387632 [Abstract] [Full Text] [Related]
33. Expression and comparative characterization of complete and C-terminally truncated forms of saccharifying α-amylase from Lactobacillus plantarum S21. Kanpiengjai A, Nguyen TH, Haltrich D, Khanongnuch C. Int J Biol Macromol; 2017 Oct 09; 103():1294-1301. PubMed ID: 28587961 [Abstract] [Full Text] [Related]
35. Functional study of C-terminal domain of the thermoacidophilic raw starch-hydrolyzing α-amylase Gt-amy. Zeng J, Guo J, Tu Y, Yuan L. Food Sci Biotechnol; 2020 Mar 09; 29(3):409-418. PubMed ID: 32257525 [Abstract] [Full Text] [Related]
36. Biochemical characterization of raw-starch-digesting alpha amylase purified from Bacillus amyloliquefaciens. Gangadharan D, Nampoothiri KM, Sivaramakrishnan S, Pandey A. Appl Biochem Biotechnol; 2009 Sep 09; 158(3):653-62. PubMed ID: 18769877 [Abstract] [Full Text] [Related]
37. Inhibition of α-amylase activity by cellulose: Kinetic analysis and nutritional implications. Dhital S, Gidley MJ, Warren FJ. Carbohydr Polym; 2015 Jun 05; 123():305-12. PubMed ID: 25843863 [Abstract] [Full Text] [Related]
38. Production of raw-starch-digesting α-amylase isoform from Bacillus sp. under solid-state fermentation and biochemical characterization. Božić N, Slavić MŠ, Gavrilović A, Vujčić Z. Bioprocess Biosyst Eng; 2014 Jul 05; 37(7):1353-60. PubMed ID: 24385152 [Abstract] [Full Text] [Related]
39. Purification and kinetics of a raw starch-hydrolyzing, thermostable, and neutral glucoamylase of the thermophilic mold Thermomucor indicae-seudaticae. Kumar S, Satyanarayana T. Biotechnol Prog; 2003 Jul 05; 19(3):936-44. PubMed ID: 12790660 [Abstract] [Full Text] [Related]
40. Effects of granule swelling on starch saccharification by granular starch hydrolyzing enzyme. Li Z, Cai L, Gu Z, Shi YC. J Agric Food Chem; 2014 Aug 13; 62(32):8114-9. PubMed ID: 25039418 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]