These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
410 related items for PubMed ID: 24422472
1. Water oxidation catalyzed by mononuclear ruthenium complexes with a 2,2'-bipyridine-6,6'-dicarboxylate (bda) ligand: how ligand environment influences the catalytic behavior. Staehle R, Tong L, Wang L, Duan L, Fischer A, Ahlquist MS, Sun L, Rau S. Inorg Chem; 2014 Feb 03; 53(3):1307-19. PubMed ID: 24422472 [Abstract] [Full Text] [Related]
4. Highly efficient bioinspired molecular Ru water oxidation catalysts with negatively charged backbone ligands. Duan L, Wang L, Li F, Li F, Sun L. Acc Chem Res; 2015 Jul 21; 48(7):2084-96. PubMed ID: 26131964 [Abstract] [Full Text] [Related]
5. Chemical and photochemical water oxidation catalyzed by mononuclear ruthenium complexes with a negatively charged tridentate ligand. Duan L, Xu Y, Gorlov M, Tong L, Andersson S, Sun L. Chemistry; 2010 Apr 19; 16(15):4659-68. PubMed ID: 20229528 [Abstract] [Full Text] [Related]
6. Reactions of ruthenium complexes having pyridyl-containing ligands, 2-pyridinecarboxylato and 2,2'-bipyridine, with an azide ion: formation of nitrido-bridged diruthenium complexes. Matsumura S, Shikano K, Oi T, Suzuki N, Nagao H. Inorg Chem; 2008 Oct 20; 47(20):9125-7. PubMed ID: 18788795 [Abstract] [Full Text] [Related]
7. Catalytic water oxidation by ruthenium(II) quaterpyridine (qpy) complexes: evidence for ruthenium(III) qpy-N,N'''-dioxide as the real catalysts. Liu Y, Ng SM, Yiu SM, Lam WW, Wei XG, Lau KC, Lau TC. Angew Chem Int Ed Engl; 2014 Dec 22; 53(52):14468-71. PubMed ID: 25348095 [Abstract] [Full Text] [Related]
10. cis,cis-[(bpy)2RuVO]2O4+ catalyzes water oxidation formally via in situ generation of radicaloid RuIV-O*. Yang X, Baik MH. J Am Chem Soc; 2006 Jun 14; 128(23):7476-85. PubMed ID: 16756301 [Abstract] [Full Text] [Related]
12. Preparation, stability, and photoreactivity of thiolato ruthenium polypyridyl complexes: Can cysteine derivatives protect ruthenium-based anticancer complexes? van Rixel VH, Busemann A, Göttle AJ, Bonnet S. J Inorg Biochem; 2015 Sep 14; 150():174-81. PubMed ID: 26187140 [Abstract] [Full Text] [Related]
13. Studies of the pathways open to copper water oxidation catalysts containing proximal hydroxy groups during basic electrocatalysis. Gerlach DL, Bhagan S, Cruce AA, Burks DB, Nieto I, Truong HT, Kelley SP, Herbst-Gervasoni CJ, Jernigan KL, Bowman MK, Pan S, Zeller M, Papish ET. Inorg Chem; 2014 Dec 15; 53(24):12689-98. PubMed ID: 25427106 [Abstract] [Full Text] [Related]
14. An easy one-pot synthesis of diverse 2,5-di(2-pyridyl)pyrroles: a versatile entry point to metal complexes of functionalised, meridial and tridentate 2,5-di(2-pyridyl)pyrrolato ligands. McSkimming A, Diachenko V, London R, Olrich K, Onie CJ, Bhadbhade MM, Bucknall MP, Read RW, Colbran SB. Chemistry; 2014 Sep 01; 20(36):11445-56. PubMed ID: 25056521 [Abstract] [Full Text] [Related]
16. Ab initio molecular dynamics study of water oxidation reaction pathways in mono-Ru catalysts. Vallés-Pardo JL, Guijt MC, Iannuzzi M, Joya KS, de Groot HJ, Buda F. Chemphyschem; 2012 Jan 16; 13(1):140-6. PubMed ID: 22223632 [Abstract] [Full Text] [Related]