These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
247 related items for PubMed ID: 24428801
41. Sulfur and oxygen isotope insights into sulfur cycling in shallow-sea hydrothermal vents, Milos, Greece. Gilhooly WP, Fike DA, Druschel GK, Kafantaris FC, Price RE, Amend JP. Geochem Trans; 2014; 15():12. PubMed ID: 25183951 [Abstract] [Full Text] [Related]
42. Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J, Lübbe Y, Deuster O, Brune DC. J Bacteriol; 2005 Feb; 187(4):1392-404. PubMed ID: 15687204 [Abstract] [Full Text] [Related]
43. A new purple sulfur bacterium isolated from a littoral microbial mat, Thiorhodococcus drewsii sp. nov. Zaar A, Fuchs G, Golecki JR, Overmann J. Arch Microbiol; 2003 Mar; 179(3):174-83. PubMed ID: 12610722 [Abstract] [Full Text] [Related]
44. Deposition of biogenic iron minerals in a methane oxidizing microbial mat. Wrede C, Kokoschka S, Dreier A, Heller C, Reitner J, Hoppert M. Archaea; 2013 Mar; 2013():102972. PubMed ID: 23843725 [Abstract] [Full Text] [Related]
45. Dissimilatory reduction of sulfate and zero-valent sulfur at low pH and its significance for bioremediation and metal recovery. Johnson DB, Sánchez-Andrea I. Adv Microb Physiol; 2019 Mar; 75():205-231. PubMed ID: 31655738 [Abstract] [Full Text] [Related]
46. Stable sulfur isotope fractionation by the green bacterium Chlorobaculum parvum during photolithoautotrophic growth on sulfide. Kelly DP. Pol J Microbiol; 2008 Mar; 57(4):275-9. PubMed ID: 19275040 [Abstract] [Full Text] [Related]
47. Effect of NO2(-) on stable isotope fractionation during bacterial sulfate reduction. Einsiedl F. Environ Sci Technol; 2009 Jan 01; 43(1):82-7. PubMed ID: 19209588 [Abstract] [Full Text] [Related]
48. [Anoxygenic phototrophic bacteria from microbial communities of Goryachinsk Thermal Spring (Baikal Area, Russia)]. Kalashnikov AM, Gaĭsin VA, Sukhacheva MV, Namsaraeva BB, Panteleeva AN, Nuianzina-Boldareva EN, Kuznetsov BB, Gorlenko VM. Mikrobiologiia; 2014 Jan 01; 83(4):484-99. PubMed ID: 25844460 [Abstract] [Full Text] [Related]
49. Sulfate-reduction, sulfide-oxidation and elemental sulfur bioreduction process: modeling and experimental validation. Xu X, Chen C, Lee DJ, Wang A, Guo W, Zhou X, Guo H, Yuan Y, Ren N, Chang JS. Bioresour Technol; 2013 Nov 01; 147():202-211. PubMed ID: 23994962 [Abstract] [Full Text] [Related]
50. Kinetics of Indigenous Nitrate Reducing Sulfide Oxidizing Activity in Microaerophilic Wastewater Biofilms. Villahermosa D, Corzo A, Garcia-Robledo E, González JM, Papaspyrou S. PLoS One; 2016 Nov 01; 11(2):e0149096. PubMed ID: 26872267 [Abstract] [Full Text] [Related]
51. Sulfur isotope effects associated with oxidation of sulfide by O2 in aqueous solution. Fry B, Ruf W, Gest H, Hayes JM. Isot Geosci; 1988 Nov 01; 73():205-10. PubMed ID: 11538336 [Abstract] [Full Text] [Related]
54. Microbial community structures and in situ sulfate-reducing and sulfur-oxidizing activities in biofilms developed on mortar specimens in a corroded sewer system. Satoh H, Odagiri M, Ito T, Okabe S. Water Res; 2009 Oct 01; 43(18):4729-39. PubMed ID: 19709714 [Abstract] [Full Text] [Related]
57. Microbial ecology of sulfur cycling near the sulfate-methane transition of deep-sea cold seep sediments. Li WL, Dong X, Lu R, Zhou YL, Zheng PF, Feng D, Wang Y. Environ Microbiol; 2021 Nov 01; 23(11):6844-6858. PubMed ID: 34622529 [Abstract] [Full Text] [Related]