These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
168 related items for PubMed ID: 24433675
21. Phylogenetic Diversity and Host Specialization of Corynespora cassiicola Responsible for Emerging Target Spot Disease of Cotton and Other Crops in the Southeastern United States. Sumabat LG, Kemerait RC, Brewer MT. Phytopathology; 2018 Jul; 108(7):892-901. PubMed ID: 29436985 [Abstract] [Full Text] [Related]
23. Genome sequence and spore germination-associated transcriptome analysis of Corynespora cassiicola from cucumber. Gao S, Zeng R, Xu L, Song Z, Gao P, Dai F. BMC Microbiol; 2020 Jul 08; 20(1):199. PubMed ID: 32641051 [Abstract] [Full Text] [Related]
24. Isolation of scopoletin from leaves of Hevea brasiliensis and the effect of scopoletin on pathogens of H. brasiliensis. Silva WP, Deraniyagala SA, Wijesundera RL, Karunanayake EH, Priyanka UM. Mycopathologia; 2002 Jul 08; 153(4):199-202. PubMed ID: 12014480 [Abstract] [Full Text] [Related]
25. An updated phylogenetic classification of Corynespora cassiicola isolates and a practical approach to their identification based on the nucleotide polymorphisms at the ga4 and caa5 loci. Banguela-Castillo A, Ramos-González PL, Peña-Marey M, Godoy CV, Harakava R. Mycologia; 2020 Jul 08; 112(1):24-38. PubMed ID: 31750788 [Abstract] [Full Text] [Related]
27. Molecular phylogeny of Rigidoporus microporus isolates associated with white rot disease of rubber trees (Hevea brasiliensis). Oghenekaro AO, Miettinen O, Omorusi VI, Evueh GA, Farid MA, Gazis R, Asiegbu FO. Fungal Biol; 2014 Jul 08; 118(5-6):495-506. PubMed ID: 24863478 [Abstract] [Full Text] [Related]
28. Genome sequences and SNP analyses of Corynespora cassiicola from cotton and soybean in the southeastern United States reveal limited diversity. Shrestha SK, Lamour K, Young-Kelly H. PLoS One; 2017 Jul 08; 12(9):e0184908. PubMed ID: 28910414 [Abstract] [Full Text] [Related]
29. Homologs of ToxB, a host-selective toxin gene from Pyrenophora tritici-repentis, are present in the genome of sister-species Pyrenophora bromi and other members of the Ascomycota. Andrie RM, Schoch CL, Hedges R, Spatafora JW, Ciuffetti LM. Fungal Genet Biol; 2008 Mar 08; 45(3):363-77. PubMed ID: 18226934 [Abstract] [Full Text] [Related]
31. Characteristics of Corynespora cassiicola, the causal agent of tobacco Corynespora leaf spot, revealed by genomic and metabolic phenomic analysis. Feng R, Wang H, Zhang X, Li T, Huang C, Zhang S, Sun M, Shi C, Hu J, Gou J. Sci Rep; 2024 Aug 07; 14(1):18326. PubMed ID: 39112526 [Abstract] [Full Text] [Related]
34. Insertional mutagenesis and cloning of the gene required for the biosynthesis of the non-host-specific toxin in Cochliobolus lunatus that causes maize leaf spot. Gao JX, Liu T, Chen J. Phytopathology; 2014 Apr 07; 104(4):332-9. PubMed ID: 24134718 [Abstract] [Full Text] [Related]
35. Six new genes required for production of T-toxin, a polyketide determinant of high virulence of Cochliobolus heterostrophus to maize. Inderbitzin P, Asvarak T, Turgeon BG. Mol Plant Microbe Interact; 2010 Apr 07; 23(4):458-72. PubMed ID: 20192833 [Abstract] [Full Text] [Related]
36. Genetic variation and variation in aggressiveness to native and exotic hosts among Brazilian populations of Ceratocystis fimbriata. Harrington TC, Thorpe DJ, Alfenas AC. Phytopathology; 2011 May 07; 101(5):555-66. PubMed ID: 21190423 [Abstract] [Full Text] [Related]
37. Genome sequences and in silico effector mining of Corynespora cassiicola CC_29 and Corynespora olivacea CBS 114450. Dal'Sasso TCDS, Rody HVS, Grijalba PE, Oliveira LO. Arch Microbiol; 2021 Oct 07; 203(8):5257-5265. PubMed ID: 34213598 [Abstract] [Full Text] [Related]
39. New Hosts of Corynespora cassiicola in Sri Lanka. Silva WPK, Wijesundera RLC, Karunanayake EH, Jayasinghe CK, Priyanka UMS. Plant Dis; 2000 Feb 07; 84(2):202. PubMed ID: 30841332 [Abstract] [Full Text] [Related]
40. Postbloom fruit drop of citrus and key lime anthracnose are caused by distinct phylogenetic lineages of Colletotrichum acutatum. Peres NA, Mackenzie SJ, Peever TL, Timmer LW. Phytopathology; 2008 Mar 07; 98(3):345-52. PubMed ID: 18944086 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]