These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
296 related items for PubMed ID: 24434013
1. The production of radionuclides for nuclear medicine from a compact, low-energy accelerator system. Webster WD, Parks GT, Titov D, Beasley P. Nucl Med Biol; 2014 May; 41 Suppl():e7-15. PubMed ID: 24434013 [Abstract] [Full Text] [Related]
2. Assessment of radionuclidic impurities in cyclotron produced (99m)Tc. Lebeda O, van Lier EJ, Štursa J, Ráliš J, Zyuzin A. Nucl Med Biol; 2012 Nov; 39(8):1286-91. PubMed ID: 22796396 [Abstract] [Full Text] [Related]
3. Measurement of excitation functions of helion-induced reactions on enriched Ru targets for production of medically important 103Pd and 101mRh and some other radionuclides. Skakun Y, Qaim SM. Appl Radiat Isot; 2008 May; 66(5):653-67. PubMed ID: 18206377 [Abstract] [Full Text] [Related]
4. Nuclear data for production and medical application of radionuclides: Present status and future needs. Qaim SM. Nucl Med Biol; 2017 Jan; 44():31-49. PubMed ID: 27821344 [Abstract] [Full Text] [Related]
5. An alumina ceramic target vessel for the remote production of metallic radionuclides by in situ target dissolution. Nagatsu K, Suzuki H, Fukada M, Minegishi K, Tsuji A, Fukumura T. Nucl Med Biol; 2012 Nov; 39(8):1281-5. PubMed ID: 22727820 [Abstract] [Full Text] [Related]
6. Measurements of (186)Re production cross section induced by deuterons on (nat)W target at ARRONAX facility. Guertin A, Duchemin C, Haddad F, Michel N, Métivier V. Nucl Med Biol; 2014 May; 41 Suppl():e16-8. PubMed ID: 24342655 [Abstract] [Full Text] [Related]
7. Production of medical radionuclides in Russia: status and future--a review. Zhuikov BL. Appl Radiat Isot; 2014 Feb; 84():48-56. PubMed ID: 24315977 [Abstract] [Full Text] [Related]
8. Investigation of 123I production using electron accelerator. Avetisyan A, Avagyan R, Dallakyan R, Avdalyan G, Dobrovolsky N, Gavalyan V, Kerobyan I, Harutyunyan G. Nucl Med Biol; 2017 Apr; 47():44-47. PubMed ID: 28110123 [Abstract] [Full Text] [Related]
9. Nuclear model analysis of excitation functions of proton, deuteron and α-particle induced reactions on nickel isotopes for production of the medically interesting copper-61. Aslam MN, Qaim SM. Appl Radiat Isot; 2014 Jul; 89():65-73. PubMed ID: 24607530 [Abstract] [Full Text] [Related]
10. Production of 89Zr via the 89Y(p,n)89Zr reaction in aqueous solution: effect of solution composition on in-target chemistry. Pandey MK, Engelbrecht HP, Byrne JP, Packard AB, DeGrado TR. Nucl Med Biol; 2014 Apr; 41(4):309-16. PubMed ID: 24607433 [Abstract] [Full Text] [Related]
11. Nuclear excitation functions of proton-induced reactions (Ep = 35 - 90 MeV) from Fe, Cu, and Al. Graves SA, Ellison PA, Barnhart TE, Valdovinos HF, Birnbaum ER, Nortier FM, Nickles RJ, Engle JW. Nucl Instrum Methods Phys Res B; 2016 Nov 01; 386():44-53. PubMed ID: 28190909 [Abstract] [Full Text] [Related]
12. A comprehensive evaluation of charged-particle data for production of the therapeutic radionuclide (103)Pd. Hussain M, Sudar S, Aslam MN, Shah HA, Ahmad R, Malik AA, Qaim SM. Appl Radiat Isot; 2009 Oct 01; 67(10):1842-54. PubMed ID: 19640722 [Abstract] [Full Text] [Related]
13. Excitation functions of (alpha,xn) reactions on (nat)Rb and (nat)Sr from threshold up to 26 MeV: possibility of production of (87)Y, (88)Y and (89)Zr. Kandil SA, Spahn I, Scholten B, Saleh ZA, Saad SM, Coenen HH, Qaim SM. Appl Radiat Isot; 2007 May 01; 65(5):561-8. PubMed ID: 17344051 [Abstract] [Full Text] [Related]
14. Experimental determination of proton-induced cross-sections on natural zirconium. Khandaker MU, Kim K, Lee MW, Kim KS, Kim GN, Cho YS, Lee YO. Appl Radiat Isot; 2009 May 01; 67(7-8):1341-7. PubMed ID: 19282193 [Abstract] [Full Text] [Related]
15. Excitation functions of natGe(p,xn)71,72,73,74 As reactions up to 100 MeV with a focus on the production of 72 As for medical and 73 As for environmental studies. Spahn I, Steyn GF, Nortier FM, Coenen HH, Qaim SM. Appl Radiat Isot; 2007 Sep 01; 65(9):1057-64. PubMed ID: 17574855 [Abstract] [Full Text] [Related]
16. Therapeutic radionuclides: production and decay property considerations. Volkert WA, Goeckeler WF, Ehrhardt GJ, Ketring AR. J Nucl Med; 1991 Jan 01; 32(1):174-85. PubMed ID: 1988628 [Abstract] [Full Text] [Related]
17. Radionuclide production and yields at Washington University School of Medicine. Tang L. Q J Nucl Med Mol Imaging; 2008 Jun 01; 52(2):121-33. PubMed ID: 18043542 [Abstract] [Full Text] [Related]
18. Modeling and experimental data of zirconium-89 production yield. Sharifian M, Sadeghi M, Alirezapour B, Yarmohammadi M, Ardaneh K. Appl Radiat Isot; 2017 Dec 01; 130():206-210. PubMed ID: 28992565 [Abstract] [Full Text] [Related]
19. Experimental studies and nuclear model calculations on proton-induced reactions on (nat)Se, (76)Se and (77)Se with particular reference to the production of the medically interesting radionuclides (76)Br and (77)Br. Hassan HE, Qaim SM, Shubin Y, Azzam A, Morsy M, Coenen HH. Appl Radiat Isot; 2004 Jun 01; 60(6):899-909. PubMed ID: 15110356 [Abstract] [Full Text] [Related]
20. Production of Copper Radionuclides in Compact Medical Cyclotrons using Solid Targets. Avila-Rodriguez MA, Valdovinos HF. Curr Radiopharm; 2021 Jun 01; 14(4):340-353. PubMed ID: 32981514 [Abstract] [Full Text] [Related] Page: [Next] [New Search]