These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


230 related items for PubMed ID: 2444259

  • 1. Oxonol VI as an optical indicator for membrane potentials in lipid vesicles.
    Apell HJ, Bersch B.
    Biochim Biophys Acta; 1987 Oct 16; 903(3):480-94. PubMed ID: 2444259
    [Abstract] [Full Text] [Related]

  • 2. Pump current and Na+/K+ coupling ratio of Na+/K+-ATPase in reconstituted lipid vesicles.
    Clarke RJ, Apell HJ, Läuger P.
    Biochim Biophys Acta; 1989 Jun 06; 981(2):326-36. PubMed ID: 2543461
    [Abstract] [Full Text] [Related]

  • 3. The effect of membrane potential on the mammalian sodium-potassium pump reconstituted into phospholipid vesicles.
    Goldshlegger R, Karlish SJ, Rephaeli A, Stein WD.
    J Physiol; 1987 Jun 06; 387():331-55. PubMed ID: 2443682
    [Abstract] [Full Text] [Related]

  • 4. A stopped-flow kinetic study of the interaction of potential-sensitive oxonol dyes with lipid vesicles.
    Clarke RJ, Apell HJ.
    Biophys Chem; 1989 Nov 06; 34(3):225-37. PubMed ID: 2611347
    [Abstract] [Full Text] [Related]

  • 5. Binding and diffusion kinetics of the interaction of a hydrophobic potential-sensitive dye with lipid vesicles.
    Clarke RJ.
    Biophys Chem; 1991 Jan 06; 39(1):91-106. PubMed ID: 2012838
    [Abstract] [Full Text] [Related]

  • 6. Optical study of active ion transport in lipid vesicles containing reconstituted Na,K-ATPase.
    Apell HJ, Marcus MM, Anner BM, Oetliker H, Läuger P.
    J Membr Biol; 1985 Jan 06; 85(1):49-63. PubMed ID: 2991528
    [Abstract] [Full Text] [Related]

  • 7. Lymphocyte membrane potential and Ca2+-sensitive potassium channels described by oxonol dye fluorescence measurements.
    Wilson HA, Chused TM.
    J Cell Physiol; 1985 Oct 06; 125(1):72-81. PubMed ID: 2413058
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Electrophysiological study with oxonol VI of passive NO3- transport by isolated plant root plasma membrane.
    Pouliquin P, Grouzis J, Gibrat R.
    Biophys J; 1999 Jan 06; 76(1 Pt 1):360-73. PubMed ID: 9876148
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Oxonol-V as a probe of chromaffin granule membrane potentials.
    Scherman D, Henry JP.
    Biochim Biophys Acta; 1980 Jun 20; 599(1):150-66. PubMed ID: 7397145
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Electrical potential accelerates the E1P(Na)----E2P conformational transition of (Na,K)-ATPase in reconstituted vesicles.
    Rephaeli A, Richards DE, Karlish SJ.
    J Biol Chem; 1986 Sep 25; 261(27):12437-40. PubMed ID: 3017974
    [Abstract] [Full Text] [Related]

  • 18. A voltage-activated cation transport pathway associated with the sodium pump.
    Halperin JA, Cornelius F.
    Biochim Biophys Acta; 1991 Dec 09; 1070(2):497-500. PubMed ID: 1662540
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.