These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


112 related items for PubMed ID: 24456344

  • 1. Specific turion yields of different clones of Spirodela polyrhiza depend on external phosphate thresholds.
    Appenroth KJ, Adamec L.
    Plant Biol (Stuttg); 2015 Jan; 17 Suppl 1():125-9. PubMed ID: 24456344
    [Abstract] [Full Text] [Related]

  • 2. The clonal dependence of turion formation in the duckweed Spirodela polyrhiza--an ecogeographical approach.
    Kuehdorf K, Jetschke G, Ballani L, Appenroth KJ.
    Physiol Plant; 2014 Jan; 150(1):46-54. PubMed ID: 23621650
    [Abstract] [Full Text] [Related]

  • 3. Turion formation in Spirodela polyrhiza: the environmental signals that induce the developmental process in nature.
    Appenroth KJ, Nickel G.
    Physiol Plant; 2010 Mar; 138(3):312-20. PubMed ID: 19961549
    [Abstract] [Full Text] [Related]

  • 4. No photoperiodoc control of the formation of turions in eight clones of Spirodela polyrhiza.
    Appenroth K.
    J Plant Physiol; 2003 Nov; 160(11):1329-34. PubMed ID: 14658385
    [Abstract] [Full Text] [Related]

  • 5. Comparative study on the sensitivity of turions and active fronds of giant duckweed (Spirodela polyrhiza (L.) Schleiden) to heavy metal treatments.
    Oláh V, Hepp A, Mészáros I.
    Chemosphere; 2015 Aug; 132():40-6. PubMed ID: 25777504
    [Abstract] [Full Text] [Related]

  • 6. Assessment of Giant Duckweed (Spirodela polyrhiza L. Schleiden) Turions as Model Objects in Ecotoxicological Applications.
    Oláh V, Hepp A, Mészáros I.
    Bull Environ Contam Toxicol; 2016 May; 96(5):596-601. PubMed ID: 26988225
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Light intensity drives different growth strategies in two duckweed species: Lemna minor L. and Spirodela polyrhiza (L.) Schleiden.
    Strzałek M, Kufel L.
    PeerJ; 2021 May; 9():e12698. PubMed ID: 35036168
    [Abstract] [Full Text] [Related]

  • 15. Genome-Wide Analysis of the Growth-Regulating Factor (GRF) Family in Aquatic Plants and Their Roles in the ABA-Induced Turion Formation of Spirodela polyrhiza.
    Li G, Chen Y, Zhao X, Yang J, Wang X, Li X, Hu S, Hou H.
    Int J Mol Sci; 2022 Sep 10; 23(18):. PubMed ID: 36142399
    [Abstract] [Full Text] [Related]

  • 16. Cadmium removal by Lemna minor and Spirodela polyrhiza.
    Chaudhuri D, Majumder A, Misra AK, Bandyopadhyay K.
    Int J Phytoremediation; 2014 Sep 10; 16(7-12):1119-32. PubMed ID: 24933906
    [Abstract] [Full Text] [Related]

  • 17. Nutrient removal and starch production through cultivation of Wolffia arrhiza.
    Fujita M, Mori K, Kodera T.
    J Biosci Bioeng; 1999 Sep 10; 87(2):194-8. PubMed ID: 16232450
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Phytotoxicity of amoxicillin to the duckweed Spirodela polyrhiza: Growth, oxidative stress, biochemical traits and antibiotic degradation.
    Singh V, Pandey B, Suthar S.
    Chemosphere; 2018 Jun 10; 201():492-502. PubMed ID: 29529576
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.